메뉴 건너뛰기




Volumn 11, Issue 1, 2009, Pages 20-28

Two-stages support vector regression for fuzzy neural networks with outliers

Author keywords

Fuzzy neural network; Least squares support vector machines for regression; Outliers; Support vector machines for regression

Indexed keywords

FUZZY FILTERS; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; REGRESSION ANALYSIS; STATISTICS; VECTORS;

EID: 67049144609     PISSN: 15622479     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (9)

References (22)
  • 3
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J. A. K. Suykens, and J. Vandewalle, "Least squares support vector machine classifiers," Neural Processing Letters, vol. 9, no. 3, pp. 293-300, 1999.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 6
    • 0004094721 scopus 로고    scopus 로고
    • PhD Thesis, published by: GMD, Birlinghoven
    • A. Smola, Learning with Kernels, PhD Thesis, published by: GMD, Birlinghoven, 1999.
    • (1999) Learning with Kernels
    • Smola, A.1
  • 10
    • 3142770766 scopus 로고    scopus 로고
    • New Fuzzy Modeling Based on Input-Output Pseudolinearization and Its Digital Approximation Via Walsh Functions
    • Jin-Tsong Jeng and Chen-Chia Chuang, "New Fuzzy Modeling Based on Input-Output Pseudolinearization and Its Digital Approximation Via Walsh Functions," International Journal of Fuzzy Systems, vol. 3, no. 3, pp. 503-511, 2001.
    • (2001) International Journal of Fuzzy Systems , vol.3 , Issue.3 , pp. 503-511
    • Jeng, J.-T.1    Chuang, C.-C.2
  • 11
    • 0026989504 scopus 로고
    • Fuzzy Systems as Universal Approximators
    • B. Kosko, "Fuzzy Systems as Universal Approximators," Proc. IEEE Int. Conf. Fuzzy Systems, pp. 1153-1162, 1992.
    • (1992) Proc. IEEE Int. Conf. Fuzzy Systems , pp. 1153-1162
    • Kosko, B.1
  • 13
  • 14
    • 33845919761 scopus 로고    scopus 로고
    • Annealing Robust Fuzzy Basis Function for Modeling with Noise and Outliers
    • Jin-Tsong Jeng, "Annealing Robust Fuzzy Basis Function for Modeling with Noise and Outliers," International Journal of Computer Applications in Technology, vol. 27, no.2, pp.166-172, 2006.
    • (2006) International Journal of Computer Applications in Technology , vol.27 , Issue.2 , pp. 166-172
    • Jeng, J.-T.1
  • 15
    • 0031364349 scopus 로고    scopus 로고
    • On-line Tuning of Fuzzy Neural Network for Adaptive Control of Nonlinear Dynamical Systems
    • Y. G. Leu, T. T. Lee, and W. Y. Wang, "On-line Tuning of Fuzzy Neural Network for Adaptive Control of Nonlinear Dynamical Systems," IEEE Trans. Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 27, pp. 1034-1043, 1997.
    • (1997) IEEE Trans. Systems, Man, and Cybernetics-Part B: Cybernetics , vol.27 , pp. 1034-1043
    • Leu, Y.G.1    Lee, T.T.2    Wang, W.Y.3
  • 18
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • J. A. K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle, "Weighted least squares support vector machines: robustness and sparse approximation," Neurocomputing, Special issue on fundamental and information processing aspects of neurocomputing, vol. 48, no. 1-4, pp. 85-105, 2002.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 19
    • 0036856978 scopus 로고    scopus 로고
    • Robust support vector regression networks for function approximation with outliers
    • C. C. Chuang, S. F. Su, J. T. Jeng, and C. C. Hsiao "Robust support vector regression networks for function approximation with outliers," IEEE Trans. on Neural Networks, vol. 13, no. 6, 2002.
    • (2002) IEEE Trans. on Neural Networks , vol.13 , Issue.6
    • Chuang, C.C.1    Su, S.F.2    Jeng, J.T.3    Hsiao, C.C.4
  • 20
    • 33744538355 scopus 로고    scopus 로고
    • Hybrid approach of selecting hyperparameters of support vector machine for regression
    • J. T. Jeng, "Hybrid approach of selecting hyperparameters of support vector machine for regression," IEEE Trans. on Systems, Man and Cybernetics, Part B, vol. 36, no. 3, pp. 699-709, 2006.
    • (2006) IEEE Trans. on Systems, Man and Cybernetics, Part B , vol.36 , Issue.3 , pp. 699-709
    • Jeng, J.T.1
  • 21
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • V. Cherkarsky and Y. Ma, "Practical selection of SVM parameters and noise estimation for SVM regression," Neural Networks, vol. 17, no. 1, pp.113-126, 2004.
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkarsky, V.1    Ma, Y.2
  • 22
    • 0034271492 scopus 로고    scopus 로고
    • The annealing robust backpropagation (ARBP) learning algorithm
    • C. C. Chuang, S. F. Su, and C. C. Hsiao, "The annealing robust backpropagation (ARBP) learning algorithm," IEEE Trans. on Neural Networks, vol. 11, no. 5, pp. 1067-1078, 2000.
    • (2000) IEEE Trans. on Neural Networks , vol.11 , Issue.5 , pp. 1067-1078
    • Chuang, C.C.1    Su, S.F.2    Hsiao, C.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.