메뉴 건너뛰기




Volumn 130, Issue 20, 2009, Pages

Ab initio molecular dynamics calculations of ion hydration free energies

Author keywords

[No Author keywords available]

Indexed keywords

AB INITIO MOLECULAR DYNAMICS; CLASSICAL FORCE FIELDS; EXPERIMENTAL VALUES; FREE ENERGY CHANGE; HYDRATION FREE ENERGIES; ION HYDRATION; PERDEW-BURKE-ERNZERHOF; SPC/E WATER; THERMODYNAMIC INTEGRATION;

EID: 66749185225     PISSN: 00219606     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.3137054     Document Type: Article
Times cited : (129)

References (73)
  • 2
    • 0033485775 scopus 로고    scopus 로고
    • Examples include, () 10.1021/ja990520y;, Fluid Phase Equilib. 0378-3812 183, 121 (2001) 10.1016/S0378-3812(01)00426-5;, J. Chem. Phys. 0021-9606 111, 1587 (1999) 10.1063/1.479418;, Chem. Phys. Lett. 0009-2614 342, 434 (2001) 10.1016/S0009-2614(01)00604-2;, J. Phys. Chem. B 1089-5647 105, 5827 (2001) 10.1021/jp003900a;, J. Am. Chem. Soc. 0002-7863 123, 9484 (2001) 10.1021/ja011030k;, J. Chem. Phys. 0021-9606 116, 196 (2002) 10.1063/1.1421366;, J. Am. Chem. Soc. 0002-7863 126, 344 (2004) 10.1021/ja036267q;, Phys. Chem. Chem. Phys. 1463-9076 6, 1966 (2004) 10.1039/b313756b;, Biophys. Chem. 0301-4622 124, 192 (2006) 10.1016/j.bpc.2006.07.002;, J. Chem. Theor. Comput. 3, 2068 (2007) 10.1021/ct700172b 1520-6106;, J. Phys. Chem. B 1089-5647 111, 4453 (2007). 10.1021/jp068475l
    • Examples include F. Bruǵ, M. Bernasconi, and M. Parrinello, J. Am. Soc. Chem. 121, 10883 (1999) 10.1021/ja990520y; S. B. Rempe and L. R. Pratt, Fluid Phase Equilib. 0378-3812 183, 121 (2001) 10.1016/S0378-3812(01)00426-5; L. M. Ramaniah, M. Bernasconi, and M. Parrinello, J. Chem. Phys. 0021-9606 111, 1587 (1999) 10.1063/1.479418; E. Schwegler, G. Galli, and F. Gygi, Chem. Phys. Lett. 0009-2614 342, 434 (2001) 10.1016/S0009-2614(01)00604-2; I. -F. Kuo and D. J. Tobias, J. Phys. Chem. B 1089-5647 105, 5827 (2001) 10.1021/jp003900a; S. Raugei and M. L. Klein, J. Am. Chem. Soc. 0002-7863 123, 9484 (2001) 10.1021/ja011030k; S. Raugei and M. L. Klein, J. Chem. Phys. 0021-9606 116, 196 (2002) 10.1063/1.1421366; K. Leung and S. B. Rempe, J. Am. Chem. Soc. 0002-7863 126, 344 (2004) 10.1021/ja036267q; S. B. Rempe, D. Asthagiri, and L. R. Pratt, Phys. Chem. Chem. Phys. 1463-9076 6, 1966 (2004) 10.1039/b313756b; S. Varma and S. B. Rempe, Biophys. Chem. 0301-4622 124, 192 (2006) 10.1016/j.bpc.2006.07.002; T. W. Whitfield, S. Varma, E. Harder, G. Lamoureux, S. B. Rempe, and B. Roux, J. Chem. Theor. Comput. 3, 2068 (2007) 10.1021/ct700172b 1520-6106; K. Leung, I. M. B. Nielsen, and I. Kurtz, J. Phys. Chem. B 1089-5647 111, 4453 (2007). 10.1021/jp068475l
    • (1999) J. Am. Soc. Chem. , vol.121 , pp. 10883
    • Bruǵ, F.1    Bernasconi, M.2    Parrinello, M.3    Rempe, S.B.4    Pratt, L.R.5    Ramaniah, L.M.6    Bernasconi, M.7    Parrinello, M.8    Schwegler, E.9    Galli, G.10    Gygi, F.11    Kuo, I.-F.12    Tobias, D.J.13    Raugei, S.14    Klein, M.L.15    Raugei, S.16    Klein, M.L.17    Leung, K.18    Rempe, S.B.19    Rempe, S.B.20    more..
  • 5
    • 56449119366 scopus 로고    scopus 로고
    • 0002-7863,. 10.1021/ja803575y
    • S. Varma and S. B. Rempe, J. Am. Chem. Soc. 0002-7863 130, 15405 (2008). 10.1021/ja803575y
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 15405
    • Varma, S.1    Rempe, S.B.2
  • 11
    • 0000269031 scopus 로고    scopus 로고
    • 1089-5647, () 10.1021/jp964037a;, J. Phys. Chem. A 1089-5639 102, 7885 (1998) 10.1021/jp982195r;, J. Chem. Phys. 0021-9606 106, 8135 (1997) 10.1063/1.473800;, J. Chem. Phys. 0021-9606 109, 10921 (1998) 10.1063/1.477788;, J. Chem. Phys. 0021-9606 107, 1981 (1997) 10.1063/1.474550;, J. Phys. Chem. B 1089-5647 101, 5622 (1997) 10.1021/jp970882x;, J. Chem. Phys. 0021-9606 110, 1856 (1999) 10.1063/1.477873;, J. Am. Chem. Soc. 0002-7863 125, 15671 (2003) 10.1021/ja037005r;, J. Chem. Phys. 0021-9606 129, 204501 (2008). 10.1063/1.3013865
    • G. Hummer, L. R. Pratt, A. E. Garcia, B. J. Berne, and S. W. Rick, J. Phys. Chem. B 1089-5647 101, 3017 (1997) 10.1021/jp964037a; G. Hummer, L. R. Pratt, and A. E. Garcia, J. Phys. Chem. A 1089-5639 102, 7885 (1998) 10.1021/jp982195r; H. S. Ashbaugh and R. H. Wood, J. Chem. Phys. 0021-9606 106, 8135 (1997) 10.1063/1.473800; T. Darden, D. Pearlman, and L. G. Pedersen, J. Chem. Phys. 0021-9606 109, 10921 (1998) 10.1063/1.477788; R. M. Lynden-Bell and J. C. Rasaiah, J. Chem. Phys. 0021-9606 107, 1981 (1997) 10.1063/1.474550; F. Figueirido, G. S. Del Buono, and R. M. Levy, J. Phys. Chem. B 1089-5647 101, 5622 (1997) 10.1021/jp970882x; P. H. Hünenberger and J. A. McCammon, J. Chem. Phys. 0021-9606 110, 1856 (1999) 10.1063/1.477873; A. Grossfield, P. -Y. Ren, and J. W. Ponder, J. Am. Chem. Soc. 0002-7863 125, 15671 (2003) 10.1021/ja037005r; H. S. Ashbaugh and D. Asthagiri, J. Chem. Phys. 0021-9606 129, 204501 (2008). 10.1063/1.3013865
    • (1997) J. Phys. Chem. B , vol.101 , pp. 3017
    • Hummer, G.1    Pratt, L.R.2    Garcia, A.E.3    Berne, B.J.4    Rick, S.W.5    Hummer, G.6    Pratt, L.R.7    Garcia, A.E.8    Ashbaugh, H.S.9    Wood, R.H.10    Darden, T.11    Pearlman, D.12    Pedersen, L.G.13    Lynden-Bell, R.M.14    Rasaiah, J.C.15    Figueirido, F.16    Del Buono, G.S.17    Levy, R.M.18    Hünenberger, P.H.19    McCammon, J.A.20    more..
  • 12
    • 33646471468 scopus 로고
    • 0021-9606,. 10.1063/1.1749657
    • J. G. Kirkwood, J. Chem. Phys. 0021-9606 3, 300 (1935). 10.1063/1.1749657
    • (1935) J. Chem. Phys. , vol.3 , pp. 300
    • Kirkwood, J.G.1
  • 16
    • 66749159842 scopus 로고    scopus 로고
    • Real space truncation of Coulomb interactions lead to other problems. As our focus is AIMD simulations based on DFT calculations using periodic boundary conditions, which almost universally apply Ewald summations, real space truncations will not be considered further herein.
    • Real space truncation of Coulomb interactions lead to other problems. As our focus is AIMD simulations based on DFT calculations using periodic boundary conditions, which almost universally apply Ewald summations, real space truncations will not be considered further herein.
  • 17
    • 0002238020 scopus 로고
    • 0022-3654, () 10.1021/j100180a010;, J. Chem. Phys. 0021-9606 88, 3281 (1988) 10.1063/1.453923;, J. Phys. Chem. 0022-3654 91, 4873 (1987) 10.1021/j100303a002;, J. Chem. Phys. 0021-9606 89, 3836 (1988). 10.1063/1.455704
    • L. R. Pratt, J. Phys. Chem. 0022-3654 96, 25 (1992) 10.1021/j100180a010; M. A. Wilson, A. Pohorille, and L. R. Pratt, J. Chem. Phys. 0021-9606 88, 3281 (1988) 10.1063/1.453923; M. A. Wilson, A. Pohorille, and L. R. Pratt, J. Phys. Chem. 0022-3654 91, 4873 (1987) 10.1021/j100303a002; Y. Zhou, G. Stell, and H. L. Friedman, J. Chem. Phys. 0021-9606 89, 3836 (1988). 10.1063/1.455704
    • (1992) J. Phys. Chem. , vol.96 , pp. 25
    • Pratt, L.R.1    Wilson, M.A.2    Pohorille, A.3    Pratt, L.R.4    Wilson, M.A.5    Pohorille, A.6    Pratt, L.R.7    Zhou, Y.8    Stell, G.9    Friedman, H.L.10
  • 18
    • 0001760319 scopus 로고    scopus 로고
    • 0026-8976,. 10.1080/002689797169916
    • V. P. Sokhan and D. J. Tildesley, Mol. Phys. 0026-8976 92, 625 (1997). 10.1080/002689797169916
    • (1997) Mol. Phys. , vol.92 , pp. 625
    • Sokhan, V.P.1    Tildesley, D.J.2
  • 19
    • 39349106336 scopus 로고    scopus 로고
    • 0021-9606, () (Our present work closely follows this preceeding work, but uses slightly different notations. In particular, instead of "second spherical moments," we use the "quadrupole moments" more widely used in the liquid state literature.). 10.1063/1.2772244
    • K. Leung and M. Marsman, J. Chem. Phys. 0021-9606 127, 154722 (2007) (Our present work closely follows this preceeding work, but uses slightly different notations. In particular, instead of "second spherical moments," we use the "quadrupole moments" more widely used in the liquid state literature.). 10.1063/1.2772244
    • (2007) J. Chem. Phys. , vol.127 , pp. 154722
    • Leung, K.1    Marsman, M.2
  • 21
    • 0028133296 scopus 로고
    • 0301-4622, (), and references therein. 10.1016/0301-4622(94)00051-4
    • Y. Marcus, Biophys. Chem. 0301-4622 51, 111 (1994), and references therein. 10.1016/0301-4622(94)00051-4
    • (1994) Biophys. Chem. , vol.51 , pp. 111
    • Marcus, Y.1
  • 24
    • 0037123079 scopus 로고    scopus 로고
    • 1089-5647,. 10.1021/jp011853w
    • L. X. Dang and T. -M. Chang, J. Phys. Chem. B 1089-5647 106, 235 (2002). 10.1021/jp011853w
    • (2002) J. Phys. Chem. B , vol.106 , pp. 235
    • Dang, L.X.1    Chang, T.-M.2
  • 25
    • 0942268865 scopus 로고    scopus 로고
    • 0036-8075,. 10.1126/science.1092787
    • I. F. W. Kuo and C. J. Mundy, Science 0036-8075 303, 658 (2004). 10.1126/science.1092787
    • (2004) Science , vol.303 , pp. 658
    • Kuo, I.F.W.1    Mundy, C.J.2
  • 29
    • 66749135969 scopus 로고    scopus 로고
    • Our value for the SPC/E water φq may be slightly different from values reported in water-vapor interface simulations because of possible small variations in the water density in interfacial simulation cells. Note also that Ref. appears to have misquoted the value of φd for the TIP4P water from Ref., and that the φd for this model reported in Ref. was computed at T=325 K, not the T=300 K of Ref.
    • Our value for the SPC/E water φq may be slightly different from values reported in water-vapor interface simulations because of possible small variations in the water density in interfacial simulation cells. Note also that Ref. appears to have misquoted the value of φd for the TIP4P water from Ref., and that the φd for this model reported in Ref. was computed at T=325 K, not the T=300 K of Ref.
  • 32
    • 0000545661 scopus 로고
    • 0022-3654, () 10.1021/j100082a037;, Catal. Today 0920-5861 113, 141 (2006). 10.1016/j.cattod.2005.11.082
    • B. G. Ershov, E. Janata, and A. Henglein, J. Phys. Chem. 0022-3654 98, 7619 (1994) 10.1021/j100082a037; J. Belloni, Catal. Today 0920-5861 113, 141 (2006). 10.1016/j.cattod.2005.11.082
    • (1994) J. Phys. Chem. , vol.98 , pp. 7619
    • Ershov, B.G.1    Janata, E.2    Henglein, A.3    Belloni, J.4
  • 36
    • 2442537377 scopus 로고    scopus 로고
    • 0163-1829, () 10.1103/PhysRevB.54.11169;, Comput. Mater. Sci. 0927-0256 6, 15 (1996). 10.1016/0927-0256(96)00008-0
    • G. Kresse and J. Furthmüller, Phys. Rev. B 0163-1829 54, 11169 (1996) 10.1103/PhysRevB.54.11169; G. Kresse and J. Furthmüller, Comput. Mater. Sci. 0927-0256 6, 15 (1996). 10.1016/0927-0256(96)00008-0
    • (1996) Phys. Rev. B , vol.54 , pp. 11169
    • Kresse, G.1    Furthmüller, J.2    Kresse, G.3    Furthmüller, J.4
  • 37
    • 25744460922 scopus 로고
    • 0163-1829,. 10.1103/PhysRevB.50.17953
    • P. E. Blöchl, Phys. Rev. B 0163-1829 50, 17953 (1994). 10.1103/PhysRevB.50.17953
    • (1994) Phys. Rev. B , vol.50 , pp. 17953
    • Blöchl, P.E.1
  • 38
    • 0011236321 scopus 로고    scopus 로고
    • The VASP implementation is discussed in, 0163-1829,. 10.1103/PhysRevB.59. 1758
    • The VASP implementation is discussed in G. Kresse and D. Joubert, Phys. Rev. B 0163-1829 59, 1758 (1999). 10.1103/PhysRevB.59.1758
    • (1999) Phys. Rev. B , vol.59 , pp. 1758
    • Kresse, G.1    Joubert, D.2
  • 39
    • 4944230287 scopus 로고    scopus 로고
    • 0021-9606, () 10.1063/1.1782074;, J. Chem. Phys. 0021-9606 122, 204510 (2005) 10.1063/1.1908913;, Phys. Chem. Chem. Phys. 1463-9076 10, 4685 (2008). 10.1039/b810017a
    • E. Schwegler, J. C. Grossman, F. Gygi, and G. Galli, J. Chem. Phys. 0021-9606 121, 5400 (2004) 10.1063/1.1782074; P. H.-L. Sit and N. Marzari, J. Chem. Phys. 0021-9606 122, 204510 (2005) 10.1063/1.1908913; S. B. Rempe, T. R. Mattsson, and K. Leung, Phys. Chem. Chem. Phys. 1463-9076 10, 4685 (2008). 10.1039/b810017a
    • (2004) J. Chem. Phys. , vol.121 , pp. 5400
    • Schwegler, E.1    Grossman, J.C.2    Gygi, F.3    Galli, G.4    Sit, P.H.-L.5    Marzari, N.6    Rempe, S.B.7    Mattsson, T.R.8    Leung, K.9
  • 40
    • 66749103377 scopus 로고    scopus 로고
    • CPMD, Copyright IBM Cor1990-2008, Copyright MPI für Festkörperforschung Stuttgart 1997-2001.
    • CPMD, http://www.cpmd.org, Copyright IBM Corp 1990-2008, Copyright MPI für Festkörperforschung Stuttgart 1997-2001.
  • 41
    • 25144446255 scopus 로고    scopus 로고
    • 1432-881X,. 10.1007/s00214-005-0655-y
    • M. Krack, Theor. Chem. Acc. 1432-881X 114, 145 (2005). 10.1007/s00214-005-0655-y
    • (2005) Theor. Chem. Acc. , vol.114 , pp. 145
    • Krack, M.1
  • 42
    • 66749180697 scopus 로고    scopus 로고
    • We have avoided directly computing the integrand at q=0 because the AIMD trajectories may be too short to adequately sample the small q regions. 〈 dH (q) /dq 〉 at such q values exhibit larger statistical fluctuations. To test the extrapolation to q=0, we have conducted classical force field TI simulations with much longer trajectory lengths but otherwise identical TI protocol and compared to 〈 dH (q) /dq 〉 directly computed at q=0. These simulations indicate that a cubic fit using our set of 6q values yields a good approximation to the q=0 integrand.
    • We have avoided directly computing the integrand at q=0 because the AIMD trajectories may be too short to adequately sample the small q regions. 〈 dH (q) /dq 〉 at such q values exhibit larger statistical fluctuations. To test the extrapolation to q=0, we have conducted classical force field TI simulations with much longer trajectory lengths but otherwise identical TI protocol and compared to 〈 dH (q) /dq 〉 directly computed at q=0. These simulations indicate that a cubic fit using our set of 6q values yields a good approximation to the q=0 integrand.
  • 43
    • 66749139754 scopus 로고    scopus 로고
    • Recall that this contribution is estimated using maximally localized Wannier functions to decompose the total electron density into individual water contributions (Ref.). As an additional test, we have taken the nuclear configuration of each of the 32 individual water molecules in an AIMD snapshot, computed the individual water φq contribution in the absence of other water molecules, added them, and compared the result with the global φq correction computed with all 32 H2 O simultaneously present in the same cell. Even though the individual H2 O approach neglects many-water effects, the two φq contributions computed are within 1%, or 1 kcal/mol, of each other.
    • Recall that this contribution is estimated using maximally localized Wannier functions to decompose the total electron density into individual water contributions (Ref.). As an additional test, we have taken the nuclear configuration of each of the 32 individual water molecules in an AIMD snapshot, computed the individual water φq contribution in the absence of other water molecules, added them, and compared the result with the global φq correction computed with all 32 H2 O simultaneously present in the same cell. Even though the individual H2 O approach neglects many-water effects, the two φq contributions computed are within 1%, or 1 kcal/mol, of each other.
  • 44
    • 4243690324 scopus 로고    scopus 로고
    • 0163-1829,. 10.1103/PhysRevB.56.12847
    • N. Marzari and D. Vanderbilt, Phys. Rev. B 0163-1829 56, 12847 (1997). 10.1103/PhysRevB.56.12847
    • (1997) Phys. Rev. B , vol.56 , pp. 12847
    • Marzari, N.1    Vanderbilt, D.2
  • 45
    • 66749145089 scopus 로고    scopus 로고
    • This behavior is not universal. Attempting to put a partial (or an entire) 2s electron on the Li+ PP to yield Liq+ in water, as opposed to globally scaling that PP by the factor q, results in the partial electron leaving the vicinity of Liq+ and becoming solvated as an excess electron in water. In other words, if we were interested in the Li Li→ Li+ half cell reaction, a more complex λ -paths would have been needed. Spontaneous ejection of electrons does not happen with Ag or Ni+, both of which are less electropositive than Li.
    • This behavior is not universal. Attempting to put a partial (or an entire) 2s electron on the Li+ PP to yield Liq+ in water, as opposed to globally scaling that PP by the factor q, results in the partial electron leaving the vicinity of Liq+ and becoming solvated as an excess electron in water. In other words, if we were interested in the Li Li→ Li+ half cell reaction, a more complex λ -paths would have been needed. Spontaneous ejection of electrons does not happen with Ag or Ni+, both of which are less electropositive than Li.
  • 46
    • 0001437693 scopus 로고
    • 0163-1829, () 10.1103/PhysRevB.44.943;, Phys. Rev. B 0163-1829 52, R5467 (1995). For details of DFT+U implementation, see Ref. 10.1103/PhysRevB.52.R5467
    • V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 0163-1829 44, 943 (1991) 10.1103/PhysRevB.44.943; A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 0163-1829 52, R5467 (1995). For details of DFT+U implementation, see Ref. 10.1103/PhysRevB.52.R5467
    • (1991) Phys. Rev. B , vol.44 , pp. 943
    • Anisimov, V.I.1    Zaanen, J.2    Andersen, O.K.3    Liechtenstein, A.I.4    Anisimov, V.I.5    Zaanen, J.6
  • 47
    • 33846245914 scopus 로고    scopus 로고
    • 0021-9606,. 10.1063/1.2409702
    • K. Leung and C. J. Medforth, J. Chem. Phys. 0021-9606 126, 024501 (2007). 10.1063/1.2409702
    • (2007) J. Chem. Phys. , vol.126 , pp. 024501
    • Leung, K.1    Medforth, C.J.2
  • 49
    • 34250817103 scopus 로고
    • 0021-9606, () 10.1063/1.464304;, J. Chem. Phys. 0021-9606 98, 5648 (1993) 10.1063/1.464913;, Phys. Rev. B 0163-1829 37, 785 (1988). 10.1103/PhysRevB.37. 785
    • A. D. Becke, J. Chem. Phys. 0021-9606 98, 1372 (1993) 10.1063/1.464304; A. D. Becke, J. Chem. Phys. 0021-9606 98, 5648 (1993) 10.1063/1.464913; C. T. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B 0163-1829 37, 785 (1988). 10.1103/PhysRevB.37.785
    • (1993) J. Chem. Phys. , vol.98 , pp. 1372
    • Becke, A.D.1    Becke, A.D.2    Lee, C.T.3    Yang, W.T.4    Parr, R.G.5
  • 50
    • 66749157563 scopus 로고    scopus 로고
    • The 6-311+G (d,p) basis also yields a PBE binding energy of 15.7 eV. As discussed in Ref., this basis and the plane-wave/PAW method used in VASP yield results that are in good agreement.
    • The 6-311+G (d,p) basis also yields a PBE binding energy of 15.7 eV. As discussed in Ref., this basis and the plane-wave/PAW method used in VASP yield results that are in good agreement.
  • 51
    • 66749124926 scopus 로고    scopus 로고
    • It may be argued that the trajectory length is short and the sampled configurations are correlated, which may underestimate the numerical noise. Hence we have tested the uncertainty using classical force fields and much longer trajectories. With otherwise identical parameters (32 H2 O, 0.1 ps sampling intervals, extrapolation to q=0), a 400 ps SPC/E trajectory reveals that, on average, a 40 ps segment of the trajectory exhibits 0.44 and 0.52 kcal/mol standard deviations for the six- and two-point TI scheme, respectively. Normally a six-point TI should exhibit far less noise than a two-point one; in the present case, the extrapolation to q=0 required for the six-point trapezoidal rule has introduced additional uncertainties. These uncertainties in SPC/E simulations are indeed comparable to and even smaller than the standard deviations estimated for the 40 ps AIMD trajectories.
    • It may be argued that the trajectory length is short and the sampled configurations are correlated, which may underestimate the numerical noise. Hence we have tested the uncertainty using classical force fields and much longer trajectories. With otherwise identical parameters (32 H2 O, 0.1 ps sampling intervals, extrapolation to q=0), a 400 ps SPC/E trajectory reveals that, on average, a 40 ps segment of the trajectory exhibits 0.44 and 0.52 kcal/mol standard deviations for the six- and two-point TI scheme, respectively. Normally a six-point TI should exhibit far less noise than a two-point one; in the present case, the extrapolation to q=0 required for the six-point trapezoidal rule has introduced additional uncertainties. These uncertainties in SPC/E simulations are indeed comparable to and even smaller than the standard deviations estimated for the 40 ps AIMD trajectories.
  • 55
    • 0002291676 scopus 로고    scopus 로고
    • 0892-7022,. 10.1080/08927020211972
    • G. Hummer, Mol. Simul. 0892-7022 28, 81 (2002). 10.1080/08927020211972
    • (2002) Mol. Simul. , vol.28 , pp. 81
    • Hummer, G.1
  • 58
    • 66749133600 scopus 로고    scopus 로고
    • While the isolated Cl- ion as predicted by PBE may not be stable in vacuum, within our periodic boundary condition simulations, Cl- has a well defined total energy and a HOMO-LUMO gaover a large range of simulation cell sizes.
    • While the isolated Cl- ion as predicted by PBE may not be stable in vacuum, within our periodic boundary condition simulations, Cl- has a well defined total energy and a HOMO-LUMO gap over a large range of simulation cell sizes.
  • 72
    • 33845328066 scopus 로고    scopus 로고
    • 0021-9606,. 10.1063/1.2370993
    • Y. Zhao and D. G. Truhlar, J. Chem. Phys. 0021-9606 125, 194101 (2006). 10.1063/1.2370993
    • (2006) J. Chem. Phys. , vol.125 , pp. 194101
    • Zhao, Y.1    Truhlar, D.G.2
  • 73
    • 4243553426 scopus 로고
    • 1050-2947,. 10.1103/PhysRevA.38.3098
    • A. D. Becke, Phys. Rev. A 1050-2947 38, 3098 (1988). 10.1103/PhysRevA.38. 3098
    • (1988) Phys. Rev. A , vol.38 , pp. 3098
    • Becke, A.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.