-
1
-
-
0344897154
-
-
0953-8984,. 10.1088/0953-8984/15/45/R01
-
P. G. Debenedetti, J. Phys.: Condens. Matter 0953-8984 15, R1669 (2003). 10.1088/0953-8984/15/45/R01
-
(2003)
J. Phys.: Condens. Matter
, vol.15
, pp. 1669
-
-
Debenedetti, P.G.1
-
3
-
-
0346390767
-
-
0021-9606,. 10.1063/1.1624055
-
B. Guillot and Y. Guissani, J. Chem. Phys. 0021-9606 119, 11740 (2003). 10.1063/1.1624055
-
(2003)
J. Chem. Phys.
, vol.119
, pp. 11740
-
-
Guillot, B.1
Guissani, Y.2
-
5
-
-
0009004953
-
-
0022-3654,. 10.1021/j100360a003
-
A. Hallbrucker, E. Mayer, and G. P. Johari, J. Phys. Chem. 0022-3654 93, 7751 (1989). 10.1021/j100360a003
-
(1989)
J. Phys. Chem.
, vol.93
, pp. 7751
-
-
Hallbrucker, A.1
Mayer, E.2
Johari, G.P.3
-
7
-
-
0022202717
-
-
0028-0836,. 10.1038/314076a0
-
O. Mishima, L. D. Calvert, and E. Whalley, Nature (London) 0028-0836 314, 76 (1985). 10.1038/314076a0
-
(1985)
Nature (London)
, vol.314
, pp. 76
-
-
Mishima, O.1
Calvert, L.D.2
Whalley, E.3
-
8
-
-
33748272658
-
-
0028-0836,. 10.1038/310393a0
-
O. Mishima, L. D. Calvert, and E. Whalley, Nature (London) 0028-0836 310, 393 (1984). 10.1038/310393a0
-
(1984)
Nature (London)
, vol.310
, pp. 393
-
-
Mishima, O.1
Calvert, L.D.2
Whalley, E.3
-
9
-
-
0035696022
-
-
1463-9076,. 10.1039/b108676f
-
T. Loerting, C. Salzmann, I. Kohl, E. Mayer, and A. Hallbrucker, Phys. Chem. Chem. Phys. 1463-9076 3, 5355 (2001). 10.1039/b108676f
-
(2001)
Phys. Chem. Chem. Phys.
, vol.3
, pp. 5355
-
-
Loerting, T.1
Salzmann, C.2
Kohl, I.3
Mayer, E.4
Hallbrucker, A.5
-
10
-
-
33845321401
-
-
0021-9606,. 10.1063/1.2378921
-
D. T. Bowron, J. L. Finney, A. Hallbrucker, I. Kohl, T. Loerting, E. Mayer, and A. K. Soper, J. Chem. Phys. 0021-9606 125, 194502 (2006). 10.1063/1.2378921
-
(2006)
J. Chem. Phys.
, vol.125
, pp. 194502
-
-
Bowron, D.T.1
Finney, J.L.2
Hallbrucker, A.3
Kohl, I.4
Loerting, T.5
Mayer, E.6
Soper, A.K.7
-
12
-
-
0037014154
-
-
0031-9007,. 10.1103/PhysRevLett.88.225503
-
J. L. Finney, A. Hallbrucker, I. Kohl, A. K. Soper, and D. T. Bowron, Phys. Rev. Lett. 0031-9007 88, 225503 (2002). 10.1103/PhysRevLett.88.225503
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 225503
-
-
Finney, J.L.1
Hallbrucker, A.2
Kohl, I.3
Soper, A.K.4
Bowron, D.T.5
-
13
-
-
0001237181
-
-
0031-9007,. 10.1103/PhysRevLett.89.205503
-
J. L. Finney, D. T. Bowron, A. K. Soper, T. Loerting, E. Mayer, and A. Hallbrucker, Phys. Rev. Lett. 0031-9007 89, 205503 (2002). 10.1103/PhysRevLett. 89.205503
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 205503
-
-
Finney, J.L.1
Bowron, D.T.2
Soper, A.K.3
Loerting, T.4
Mayer, E.5
Hallbrucker, A.6
-
14
-
-
0037162879
-
-
0036-8075,. 10.1126/science.1074178
-
C. A. Tulk, C. J. Benmore, J. Urquidi, D. D. Klug, J. Neuefeind, B. Tomberli, and P. A. Egelstaff, Science 0036-8075 297, 1320 (2002). 10.1126/science.1074178
-
(2002)
Science
, vol.297
, pp. 1320
-
-
Tulk, C.A.1
Benmore, C.J.2
Urquidi, J.3
Klug, D.D.4
Neuefeind, J.5
Tomberli, B.6
Egelstaff, P.A.7
-
15
-
-
0037471737
-
-
0953-8984,. 10.1088/0953-8984/15/3/301
-
M. M. Koza, H. Schober, H. E. Fischer, T. Hansen, and F. Fujara, J. Phys.: Condens. Matter 0953-8984 15, 321 (2003). 10.1088/0953-8984/15/3/301
-
(2003)
J. Phys.: Condens. Matter
, vol.15
, pp. 321
-
-
Koza, M.M.1
Schober, H.2
Fischer, H.E.3
Hansen, T.4
Fujara, F.5
-
16
-
-
0037057714
-
-
0028-0836,. 10.1038/nature01106
-
O. Mishima and Y. Suzuki, Nature (London) 0028-0836 419, 599 (2002). 10.1038/nature01106
-
(2002)
Nature (London)
, vol.419
, pp. 599
-
-
Mishima, O.1
Suzuki, Y.2
-
17
-
-
33744823277
-
-
1745-2473,. 10.1038/nphys313
-
R. J. Nelmes, J. S. Loveday, T. Strässle, C. L. Bull, M. Guthrie, G. Hamel, and S. Klotz, Nat. Phys. 1745-2473 2, 414 (2006). 10.1038/nphys313
-
(2006)
Nat. Phys.
, vol.2
, pp. 414
-
-
Nelmes, R.J.1
Loveday, J.S.2
Strässle, T.3
Bull, C.L.4
Guthrie, M.5
Hamel, G.6
Klotz, S.7
-
18
-
-
38849173191
-
-
0021-9606,. 10.1063/1.2830029
-
K. Winkel, M. S. Elsaesser, E. Mayer, and T. Loerting, J. Chem. Phys. 0021-9606 128, 044510 (2008). 10.1063/1.2830029
-
(2008)
J. Chem. Phys.
, vol.128
, pp. 044510
-
-
Winkel, K.1
Elsaesser, M.S.2
Mayer, E.3
Loerting, T.4
-
19
-
-
84899837204
-
-
The accuracy that can be obtained when comparing two separate experiments is about ±0.01 GPa and is much better when comparing two curves in a single experiment. The accuracy of the compression curve measurements has recently been improved beyond the original method reported in, Proceedings of the 11th International Conference on the Physics and Chemistry of Ice, This improvement was achieved by (i) reducing the height of the sample through the use of a 10 mm bore compression volume instead of the original 8 mm bore, (ii) by carefully controlling the history of the LDA sample (e.g., annealing time, temperature, rate of and heating) and (iii) by improving the temperature control of the sample from ±2 K to ±1 K at all stages of the transformation.
-
The accuracy that can be obtained when comparing two separate experiments is about ±0.01 GPa and is much better when comparing two curves in a single experiment. The accuracy of the compression curve measurements has recently been improved beyond the original method reported in K. Winkel, W. Schustereder, I. Kohl, C. G. Salzmann, E. Mayer, and T. Loerting, Proceedings of the 11th International Conference on the Physics and Chemistry of Ice, 2007, pp. 641-648. This improvement was achieved by (i) reducing the height of the sample through the use of a 10 mm bore compression volume instead of the original 8 mm bore, (ii) by carefully controlling the history of the LDA sample (e.g., annealing time, temperature, rate of and heating) and (iii) by improving the temperature control of the sample from ±2 K to ±1 K at all stages of the transformation.
-
(2007)
, pp. 641-648
-
-
Winkel, K.1
Schustereder, W.2
Kohl, I.3
Salzmann, C.G.4
Mayer, E.5
Loerting, T.6
-
20
-
-
66749104570
-
-
LDAI was produced by controlled heating of HDA to 122 K and recooling to 80 K directly in the TiZr cell during the neutron scattering experiment (Ref.). LDAII was produced in a piston-cylinder apparatus of 10 mm bore diameter by slow decompression of VHDA at 140 K to 0.02 GPa with a rate of 20 MPa/min, and then quench recovering the sample (Ref.). The original VHDA state was prepared via the formation of HDA by the compression of hexagonal ice at 100 K to a pressure of 1.4 GPa (Refs.), followed by annealing at 1.1 GPa to 160 K.
-
LDAI was produced by controlled heating of HDA to 122 K and recooling to 80 K directly in the TiZr cell during the neutron scattering experiment (Ref.). LDAII was produced in a piston-cylinder apparatus of 10 mm bore diameter by slow decompression of VHDA at 140 K to 0.02 GPa with a rate of 20 MPa/min, and then quench recovering the sample (Ref.). The original VHDA state was prepared via the formation of HDA by the compression of hexagonal ice at 100 K to a pressure of 1.4 GPa (Refs.), followed by annealing at 1.1 GPa to 160 K.
-
-
-
-
21
-
-
24944544628
-
-
0163-1829,. 10.1103/PhysRevB.72.104204
-
A. K. Soper, Phys. Rev. B 0163-1829 72, 104204 (2005). 10.1103/PhysRevB.72.104204
-
(2005)
Phys. Rev. B
, vol.72
, pp. 104204
-
-
Soper, A.K.1
-
22
-
-
66749130959
-
-
The density of both LDAI and LDAII is the same and had been measured by flotation as described in Ref.
-
The density of both LDAI and LDAII is the same and had been measured by flotation as described in Ref.
-
-
-
-
23
-
-
1842558807
-
-
1463-9076,. 10.1039/b305624d
-
C. G. Salzmann, I. Kohl, T. Loerting, E. Mayer, and A. Hallbrucker, Phys. Chem. Chem. Phys. 1463-9076 5, 3507 (2003). 10.1039/b305624d
-
(2003)
Phys. Chem. Chem. Phys.
, vol.5
, pp. 3507
-
-
Salzmann, C.G.1
Kohl, I.2
Loerting, T.3
Mayer, E.4
Hallbrucker, A.5
-
24
-
-
36549098121
-
-
0021-9606,. 10.1063/1.450301
-
Y. P. Handa, O. Mishima, and E. Whalley, J. Chem. Phys. 0021-9606 84, 2766 (1986). 10.1063/1.450301
-
(1986)
J. Chem. Phys.
, vol.84
, pp. 2766
-
-
Handa, Y.P.1
Mishima, O.2
Whalley, E.3
|