-
6
-
-
0003833812
-
-
R. M. Dreizler and J. da Providencia, Plenum, New York
-
E. H. Lieb, in Density Functional Methods in Physics, ed., R. M. Dreizler, and, J. da Providencia, Plenum, New York, 1985
-
(1985)
Density Functional Methods in Physics, Ed.
-
-
Lieb In, E.H.1
-
8
-
-
0035844611
-
-
Strictly speaking, this additional step is only straightforward in the charge-density-only formulation of DFT. If spin or current densities are employed, additional complications arise related to the nonuniqueness of the external potentials in DFTs that employ more than one density variable. The present work is not affected by these complications, and can be extended to multi-density DFTs, such as spin-DFT, without formal problems
-
K. Capelle G. Vignale Phys. Rev. Lett. 2001 86 5546
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 5546
-
-
Capelle, K.1
Vignale, G.2
-
11
-
-
0003759441
-
-
D. P. Chong, World Scientific, Singapore
-
M. E. Casida, in Recent Advances in Density Functional Methods, ed., D. P. Chong, World Scientific, Singapore, 1995
-
(1995)
Recent Advances in Density Functional Methods, Ed.
-
-
Casida In, M.E.1
-
30
-
-
66749142757
-
-
In fact, the large number of possible variations on the GCM+DFT theme can equally be seen as an advantage of the method (allowing enormous flexibility in choosing the deformation, and the resulting physics) or a disadvantage (since no single answer may be the best for all purposes, and systematic prescriptions for choosing the best generator coordinate are still lacking)
-
In fact, the large number of possible variations on the GCM+DFT theme can equally be seen as an advantage of the method (allowing enormous flexibility in choosing the deformation, and the resulting physics) or a disadvantage (since no single answer may be the best for all purposes, and systematic prescriptions for choosing the best generator coordinate are still lacking)
-
-
-
-
34
-
-
0003454331
-
-
J. F. Dobson, G. Vignale and M. P. Das, Plenum, New York
-
M. Petersilka, U. J. Gossmann and E. K. U. Gross, in Density Functional Theory: Recent Progress and New Directions, ed., J. F. Dobson, G. Vignale, and, M. P. Das, Plenum, New York, 1998
-
(1998)
Density Functional Theory: Recent Progress and New Directions, Ed.
-
-
Petersilka, M.1
Gossmann, U.J.2
Gross In, E.K.U.3
-
35
-
-
0038626673
-
-
Gaussian, Inc., Wallingford, CT
-
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03, Gaussian, Inc., Wallingford, CT, 2003
-
(2003)
GAUSSIAN 03
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Montgomery, Jr.J.A.7
Vreven, T.8
Kudin, K.N.9
Burant, J.C.10
Millam, J.M.11
Iyengar, S.S.12
Tomasi, J.13
Barone, V.14
Mennucci, B.15
Cossi, M.16
Scalmani, G.17
Rega, N.18
Petersson, G.A.19
Nakatsuji, H.20
Hada, M.21
Ehara, M.22
Toyota, K.23
Fukuda, R.24
Hasegawa, J.25
Ishida, M.26
Nakajima, T.27
Honda, Y.28
Kitao, O.29
Nakai, H.30
Klene, M.31
Li, X.32
Knox, J.E.33
Hratchian, H.P.34
Cross, J.B.35
Bakken, V.36
Adamo, C.37
Jaramillo, J.38
Gomperts, R.39
Stratmann, R.E.40
Yazyev, O.41
Austin, A.J.42
Cammi, R.43
Pomelli, C.44
Ochterski, J.45
Ayala, P.Y.46
Morokuma, K.47
Voth, G.A.48
Salvador, P.49
Dannenberg, J.J.50
Zakrzewski, V.G.51
Dapprich, S.52
Daniels, A.D.53
Strain, M.C.54
Farkas, O.55
Malick, D.K.56
Rabuck, A.D.57
Raghavachari, K.58
Foresman, J.B.59
Ortiz, J.V.60
Cui, Q.61
Baboul, A.G.62
Clifford, S.63
Cioslowski, J.64
Stefanov, B.B.65
Liu, G.66
Liashenko, A.67
Piskorz, P.68
Komaromi, I.69
Martin, R.L.70
Fox, D.J.71
Keith, T.72
Al-Laham, M.A.73
Peng, C.Y.74
Nanayakkara, A.75
Challacombe, M.76
Gill, P.M.W.77
Johnson, B.G.78
Chen, W.79
Wong, M.W.80
Gonzalez, C.81
Pople, J.A.82
more..
-
36
-
-
66749095822
-
-
opmks: Basis-set free atomic DFT program written by E. Engel, University of Frankfurt, Germany
-
opmks: Basis-set free atomic DFT program written by E. Engel, University of Frankfurt, Germany
-
-
-
-
47
-
-
66749148659
-
-
note
-
An additional feature of the GCM approach, which is not explored here, is that it produces a simple few-determinant wave function corresponding to the energies. In practice, this wave function is given by the seed wave functions, weighted by the values of f(α) obtained from solving the GHW equation. Interestingly, this information becomes available at no extra computational expense, in addition to the one required for the energies. Differently from the undeformed KS determinant, this wave function does not necessarily reproduce the correct density, but unlike that determinant, it is by construction an approximation to the many-body wave function
-
-
-
|