-
1
-
-
47749140681
-
-
10.1103/RevModPhys.80.885
-
I. Bloch, Rev. Mod. Phys. 80, 885 (2008). 10.1103/RevModPhys.80.885
-
(2008)
Rev. Mod. Phys.
, vol.80
, pp. 885
-
-
Bloch, I.1
-
2
-
-
51749087312
-
-
10.1038/nature07244
-
R. Jördens, Nature (London) 455, 204 (2008). 10.1038/nature07244
-
(2008)
Nature (London)
, vol.455
, pp. 204
-
-
Jördens, R.1
-
3
-
-
57349135204
-
-
10.1126/science.1165449
-
U. Schneider, Science 322, 1520 (2008). 10.1126/science.1165449
-
(2008)
Science
, vol.322
, pp. 1520
-
-
Schneider, U.1
-
4
-
-
27144519101
-
-
For a system of interacting fermions in an optical lattice, this relation is more involved. See 10.1103/PhysRevLett.95.056401;
-
For a system of interacting fermions in an optical lattice, this relation is more involved. See F. Werner, Phys. Rev. Lett. 95, 056401 (2005) 10.1103/PhysRevLett.95.056401
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 056401
-
-
Werner, F.1
-
5
-
-
34547576150
-
-
10.1103/PhysRevB.76.064402;
-
A. M. Dare, Phys. Rev. B 76, 064402 (2007) 10.1103/PhysRevB.76.064402
-
(2007)
Phys. Rev. B
, vol.76
, pp. 064402
-
-
Dare, A.M.1
-
6
-
-
40749138571
-
-
10.1103/PhysRevA.77.023623
-
A. Koetsier, Phys. Rev. A 77, 023623 (2008). 10.1103/PhysRevA.77.023623
-
(2008)
Phys. Rev. A
, vol.77
, pp. 023623
-
-
Koetsier, A.1
-
7
-
-
33746613260
-
-
10.1103/PhysRevA.74.013622
-
M. Popp, Phys. Rev. A 74, 013622 (2006). 10.1103/PhysRevA.74.013622
-
(2006)
Phys. Rev. A
, vol.74
, pp. 013622
-
-
Popp, M.1
-
8
-
-
38849089929
-
-
10.1103/PhysRevA.77.015602
-
B. Capogrosso-Sansone, Phys. Rev. A 77, 015602 (2008). 10.1103/PhysRevA.77.015602
-
(2008)
Phys. Rev. A
, vol.77
, pp. 015602
-
-
Capogrosso-Sansone, B.1
-
9
-
-
4043160047
-
-
10.1103/PhysRevLett.78.990
-
P. W. H. Pinkse, Phys. Rev. Lett. 78, 990 (1997). 10.1103/PhysRevLett.78. 990
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 990
-
-
Pinkse, P.W.H.1
-
10
-
-
4043181418
-
-
10.1103/PhysRevLett.81.2194
-
D. M. Stamper-Kurn, Phys. Rev. Lett. 81, 2194 (1998). 10.1103/PhysRevLett.81.2194
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 2194
-
-
Stamper-Kurn, D.M.1
-
11
-
-
84862356011
-
-
10.1103/PhysRevLett.92.150404
-
L. D. Carr, Phys. Rev. Lett. 92, 150404 (2004). 10.1103/PhysRevLett.92. 150404
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 150404
-
-
Carr, L.D.1
-
12
-
-
57149101311
-
-
10.1103/PhysRevA.78.063602
-
R. Haussmann, Phys. Rev. A 78, 063602 (2008). 10.1103/PhysRevA.78.063602
-
(2008)
Phys. Rev. A
, vol.78
, pp. 063602
-
-
Haussmann, R.1
-
13
-
-
18544365362
-
-
10.1103/PhysRevA.71.033616;
-
P. B. Blakie and A. Bezett, Phys. Rev. A 71, 033616 (2005) 10.1103/PhysRevA.71.033616
-
(2005)
Phys. Rev. A
, vol.71
, pp. 033616
-
-
Blakie, P.B.1
Bezett, A.2
-
14
-
-
34347325041
-
-
10.1103/PhysRevA.75.063609
-
P. B. Blakie, Phys. Rev. A 75, 063609 (2007). 10.1103/PhysRevA.75.063609
-
(2007)
Phys. Rev. A
, vol.75
, pp. 063609
-
-
Blakie, P.B.1
-
15
-
-
33751509332
-
-
10.1103/PhysRevLett.97.220403
-
A. Griessner, Phys. Rev. Lett. 97, 220403 (2006). 10.1103/PhysRevLett.97. 220403
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 220403
-
-
Griessner, A.1
-
17
-
-
4243471262
-
-
10.1103/PhysRevLett.84.2957;
-
A. P. Ramirez, Phys. Rev. Lett. 84, 2957 (2000) 10.1103/PhysRevLett.84. 2957
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 2957
-
-
Ramirez, A.P.1
-
18
-
-
24644491193
-
-
10.1126/science.1114727;
-
S. Nakatsuji, Science 309, 1697 (2005) 10.1126/science.1114727
-
(2005)
Science
, vol.309
, pp. 1697
-
-
Nakatsuji, S.1
-
19
-
-
34848884236
-
-
10.1103/PhysRevLett.99.137207
-
Y. Okamoto, Phys. Rev. Lett. 99, 137207 (2007). 10.1103/PhysRevLett.99. 137207
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 137207
-
-
Okamoto, Y.1
-
20
-
-
66649087115
-
-
In the core, any phase with sufficiently low entropy can be used. The low entropy of a band insulator was also put to use in Ref..
-
In the core, any phase with sufficiently low entropy can be used. The low entropy of a band insulator was also put to use in Ref..
-
-
-
-
21
-
-
66649114224
-
-
The low entropy per particle in the core region could be, for example, deduced from a measurement of the double occupancy.
-
The low entropy per particle in the core region could be, for example, deduced from a measurement of the double occupancy.
-
-
-
-
23
-
-
66649134398
-
-
For a 3D lattice loaded with K 40 atoms, we can use beams of P=2.7W at λL =532nm focused to a waist of 310μm. For the optical dipole trap, we can use two beams in the x and y directions of P=15W at λDT =1064nm focused to the same waist as the lattice. ER = h2 / (2m λL2) is the recoil energy. For Vlattice =8 ER, 6J=0.19 ER. To create the potential profile, all energy scales were chosen to be smaller than the energy required to excite atoms from the first to the second band as Δ E1→2 /6J∼19.
-
For a 3D lattice loaded with K 40 atoms, we can use beams of P=2.7W at λL =532nm focused to a waist of 310μm. For the optical dipole trap, we can use two beams in the x and y directions of P=15W at λDT =1064nm focused to the same waist as the lattice. ER = h2 / (2m λL2) is the recoil energy. For Vlattice =8 ER, 6J=0.19 ER. To create the potential profile, all energy scales were chosen to be smaller than the energy required to excite atoms from the first to the second band as Δ E1→2 /6J∼19.
-
-
-
-
24
-
-
7244221608
-
-
10.1103/PhysRevLett.81.3108
-
D. Jaksch, Phys. Rev. Lett. 81, 3108 (1998). 10.1103/PhysRevLett.81.3108
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 3108
-
-
Jaksch, D.1
-
25
-
-
0030528685
-
-
10.1103/RevModPhys.68.13
-
A. Georges, Rev. Mod. Phys. 68, 13 (1996). 10.1103/RevModPhys.68.13
-
(1996)
Rev. Mod. Phys.
, vol.68
, pp. 13
-
-
Georges, A.1
-
26
-
-
56849113828
-
-
10.1103/PhysRevLett.101.210403
-
L. De Leo, Phys. Rev. Lett. 101, 210403 (2008). 10.1103/PhysRevLett.101. 210403
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 210403
-
-
De Leo, L.1
-
27
-
-
66649109701
-
-
Only the height of the barrier is adjusted to adequately suppress the entropy exchange between the core and storage regions.
-
Only the height of the barrier is adjusted to adequately suppress the entropy exchange between the core and storage regions.
-
-
-
-
28
-
-
66649084341
-
-
For the example shown in Fig. 2, the depth of the shallow trap is on the order of 25J. A barrier with height exceeding 36J and radius ∼150a implies a realistic tenfold increase in laser power compared to the initial configuration.
-
For the example shown in Fig. 2, the depth of the shallow trap is on the order of 25J. A barrier with height exceeding 36J and radius ∼150a implies a realistic tenfold increase in laser power compared to the initial configuration.
-
-
-
-
29
-
-
5844393633
-
-
10.1103/PhysRevA.55.2989
-
E. Peik, Phys. Rev. A 55, 2989 (1997). 10.1103/PhysRevA.55.2989
-
(1997)
Phys. Rev. A
, vol.55
, pp. 2989
-
-
Peik, E.1
-
30
-
-
0032573369
-
-
10.1126/science.282.5394.1686
-
B. P. Anderson, Science 282, 1686 (1998). 10.1126/science.282.5394.1686
-
(1998)
Science
, vol.282
, pp. 1686
-
-
Anderson, B.P.1
-
31
-
-
66649088888
-
-
The large difference stems from the quadratic dependence of ALZ on the recoil energy, which is about 6.7 times larger for L6 i than for K 40.
-
The large difference stems from the quadratic dependence of ALZ on the recoil energy, which is about 6.7 times larger for L6 i than for K 40.
-
-
-
-
32
-
-
10244221686
-
-
10.1088/1742-5468/2004/04/P04005
-
A. J. Daley, J. Stat. Mech.: Theory Exp. (2004) P04005. 10.1088/1742-5468/2004/04/P04005
-
J. Stat. Mech.: Theory Exp.
, vol.2004
, pp. 04005
-
-
Daley, A.J.1
-
33
-
-
19444381068
-
-
10.1103/PhysRevLett.93.076401
-
S. R. White, Phys. Rev. Lett. 93, 076401 (2004). 10.1103/PhysRevLett.93. 076401
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 076401
-
-
White, S.R.1
-
34
-
-
66649085766
-
-
The switching on can be performed on a relatively short time scale of the order of 100/J, whereas the relaxation process is more critical and has been performed on the order of 400/J.
-
The switching on can be performed on a relatively short time scale of the order of 100/J, whereas the relaxation process is more critical and has been performed on the order of 400/J.
-
-
-
|