메뉴 건너뛰기




Volumn 79, Issue 6, 2009, Pages

Cooling fermionic atoms in optical lattices by shaping the confinement

Author keywords

[No Author keywords available]

Indexed keywords

ATOMS; CRYSTAL LATTICES; ENTROPY; FERMIONS; OPTICAL MATERIALS; PARTICLE OPTICS; QUANTUM CONFINEMENT;

EID: 66649113056     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.79.061601     Document Type: Article
Times cited : (117)

References (34)
  • 1
    • 47749140681 scopus 로고    scopus 로고
    • 10.1103/RevModPhys.80.885
    • I. Bloch, Rev. Mod. Phys. 80, 885 (2008). 10.1103/RevModPhys.80.885
    • (2008) Rev. Mod. Phys. , vol.80 , pp. 885
    • Bloch, I.1
  • 2
    • 51749087312 scopus 로고    scopus 로고
    • 10.1038/nature07244
    • R. Jördens, Nature (London) 455, 204 (2008). 10.1038/nature07244
    • (2008) Nature (London) , vol.455 , pp. 204
    • Jördens, R.1
  • 3
    • 57349135204 scopus 로고    scopus 로고
    • 10.1126/science.1165449
    • U. Schneider, Science 322, 1520 (2008). 10.1126/science.1165449
    • (2008) Science , vol.322 , pp. 1520
    • Schneider, U.1
  • 4
    • 27144519101 scopus 로고    scopus 로고
    • For a system of interacting fermions in an optical lattice, this relation is more involved. See 10.1103/PhysRevLett.95.056401;
    • For a system of interacting fermions in an optical lattice, this relation is more involved. See F. Werner, Phys. Rev. Lett. 95, 056401 (2005) 10.1103/PhysRevLett.95.056401
    • (2005) Phys. Rev. Lett. , vol.95 , pp. 056401
    • Werner, F.1
  • 5
    • 34547576150 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.76.064402;
    • A. M. Dare, Phys. Rev. B 76, 064402 (2007) 10.1103/PhysRevB.76.064402
    • (2007) Phys. Rev. B , vol.76 , pp. 064402
    • Dare, A.M.1
  • 6
    • 40749138571 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.77.023623
    • A. Koetsier, Phys. Rev. A 77, 023623 (2008). 10.1103/PhysRevA.77.023623
    • (2008) Phys. Rev. A , vol.77 , pp. 023623
    • Koetsier, A.1
  • 7
    • 33746613260 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.74.013622
    • M. Popp, Phys. Rev. A 74, 013622 (2006). 10.1103/PhysRevA.74.013622
    • (2006) Phys. Rev. A , vol.74 , pp. 013622
    • Popp, M.1
  • 8
    • 38849089929 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.77.015602
    • B. Capogrosso-Sansone, Phys. Rev. A 77, 015602 (2008). 10.1103/PhysRevA.77.015602
    • (2008) Phys. Rev. A , vol.77 , pp. 015602
    • Capogrosso-Sansone, B.1
  • 9
    • 4043160047 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.78.990
    • P. W. H. Pinkse, Phys. Rev. Lett. 78, 990 (1997). 10.1103/PhysRevLett.78. 990
    • (1997) Phys. Rev. Lett. , vol.78 , pp. 990
    • Pinkse, P.W.H.1
  • 10
    • 4043181418 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.81.2194
    • D. M. Stamper-Kurn, Phys. Rev. Lett. 81, 2194 (1998). 10.1103/PhysRevLett.81.2194
    • (1998) Phys. Rev. Lett. , vol.81 , pp. 2194
    • Stamper-Kurn, D.M.1
  • 11
    • 84862356011 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.92.150404
    • L. D. Carr, Phys. Rev. Lett. 92, 150404 (2004). 10.1103/PhysRevLett.92. 150404
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 150404
    • Carr, L.D.1
  • 12
    • 57149101311 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.78.063602
    • R. Haussmann, Phys. Rev. A 78, 063602 (2008). 10.1103/PhysRevA.78.063602
    • (2008) Phys. Rev. A , vol.78 , pp. 063602
    • Haussmann, R.1
  • 13
    • 18544365362 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.71.033616;
    • P. B. Blakie and A. Bezett, Phys. Rev. A 71, 033616 (2005) 10.1103/PhysRevA.71.033616
    • (2005) Phys. Rev. A , vol.71 , pp. 033616
    • Blakie, P.B.1    Bezett, A.2
  • 14
    • 34347325041 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.75.063609
    • P. B. Blakie, Phys. Rev. A 75, 063609 (2007). 10.1103/PhysRevA.75.063609
    • (2007) Phys. Rev. A , vol.75 , pp. 063609
    • Blakie, P.B.1
  • 15
    • 33751509332 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.97.220403
    • A. Griessner, Phys. Rev. Lett. 97, 220403 (2006). 10.1103/PhysRevLett.97. 220403
    • (2006) Phys. Rev. Lett. , vol.97 , pp. 220403
    • Griessner, A.1
  • 17
    • 4243471262 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.84.2957;
    • A. P. Ramirez, Phys. Rev. Lett. 84, 2957 (2000) 10.1103/PhysRevLett.84. 2957
    • (2000) Phys. Rev. Lett. , vol.84 , pp. 2957
    • Ramirez, A.P.1
  • 18
    • 24644491193 scopus 로고    scopus 로고
    • 10.1126/science.1114727;
    • S. Nakatsuji, Science 309, 1697 (2005) 10.1126/science.1114727
    • (2005) Science , vol.309 , pp. 1697
    • Nakatsuji, S.1
  • 19
    • 34848884236 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.99.137207
    • Y. Okamoto, Phys. Rev. Lett. 99, 137207 (2007). 10.1103/PhysRevLett.99. 137207
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 137207
    • Okamoto, Y.1
  • 20
    • 66649087115 scopus 로고    scopus 로고
    • In the core, any phase with sufficiently low entropy can be used. The low entropy of a band insulator was also put to use in Ref..
    • In the core, any phase with sufficiently low entropy can be used. The low entropy of a band insulator was also put to use in Ref..
  • 21
    • 66649114224 scopus 로고    scopus 로고
    • The low entropy per particle in the core region could be, for example, deduced from a measurement of the double occupancy.
    • The low entropy per particle in the core region could be, for example, deduced from a measurement of the double occupancy.
  • 23
    • 66649134398 scopus 로고    scopus 로고
    • For a 3D lattice loaded with K 40 atoms, we can use beams of P=2.7W at λL =532nm focused to a waist of 310μm. For the optical dipole trap, we can use two beams in the x and y directions of P=15W at λDT =1064nm focused to the same waist as the lattice. ER = h2 / (2m λL2) is the recoil energy. For Vlattice =8 ER, 6J=0.19 ER. To create the potential profile, all energy scales were chosen to be smaller than the energy required to excite atoms from the first to the second band as Δ E1→2 /6J∼19.
    • For a 3D lattice loaded with K 40 atoms, we can use beams of P=2.7W at λL =532nm focused to a waist of 310μm. For the optical dipole trap, we can use two beams in the x and y directions of P=15W at λDT =1064nm focused to the same waist as the lattice. ER = h2 / (2m λL2) is the recoil energy. For Vlattice =8 ER, 6J=0.19 ER. To create the potential profile, all energy scales were chosen to be smaller than the energy required to excite atoms from the first to the second band as Δ E1→2 /6J∼19.
  • 24
    • 7244221608 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.81.3108
    • D. Jaksch, Phys. Rev. Lett. 81, 3108 (1998). 10.1103/PhysRevLett.81.3108
    • (1998) Phys. Rev. Lett. , vol.81 , pp. 3108
    • Jaksch, D.1
  • 25
    • 0030528685 scopus 로고    scopus 로고
    • 10.1103/RevModPhys.68.13
    • A. Georges, Rev. Mod. Phys. 68, 13 (1996). 10.1103/RevModPhys.68.13
    • (1996) Rev. Mod. Phys. , vol.68 , pp. 13
    • Georges, A.1
  • 26
    • 56849113828 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.101.210403
    • L. De Leo, Phys. Rev. Lett. 101, 210403 (2008). 10.1103/PhysRevLett.101. 210403
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 210403
    • De Leo, L.1
  • 27
    • 66649109701 scopus 로고    scopus 로고
    • Only the height of the barrier is adjusted to adequately suppress the entropy exchange between the core and storage regions.
    • Only the height of the barrier is adjusted to adequately suppress the entropy exchange between the core and storage regions.
  • 28
    • 66649084341 scopus 로고    scopus 로고
    • For the example shown in Fig. 2, the depth of the shallow trap is on the order of 25J. A barrier with height exceeding 36J and radius ∼150a implies a realistic tenfold increase in laser power compared to the initial configuration.
    • For the example shown in Fig. 2, the depth of the shallow trap is on the order of 25J. A barrier with height exceeding 36J and radius ∼150a implies a realistic tenfold increase in laser power compared to the initial configuration.
  • 29
    • 5844393633 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.55.2989
    • E. Peik, Phys. Rev. A 55, 2989 (1997). 10.1103/PhysRevA.55.2989
    • (1997) Phys. Rev. A , vol.55 , pp. 2989
    • Peik, E.1
  • 30
    • 0032573369 scopus 로고    scopus 로고
    • 10.1126/science.282.5394.1686
    • B. P. Anderson, Science 282, 1686 (1998). 10.1126/science.282.5394.1686
    • (1998) Science , vol.282 , pp. 1686
    • Anderson, B.P.1
  • 31
    • 66649088888 scopus 로고    scopus 로고
    • The large difference stems from the quadratic dependence of ALZ on the recoil energy, which is about 6.7 times larger for L6 i than for K 40.
    • The large difference stems from the quadratic dependence of ALZ on the recoil energy, which is about 6.7 times larger for L6 i than for K 40.
  • 32
    • 10244221686 scopus 로고    scopus 로고
    • 10.1088/1742-5468/2004/04/P04005
    • A. J. Daley, J. Stat. Mech.: Theory Exp. (2004) P04005. 10.1088/1742-5468/2004/04/P04005
    • J. Stat. Mech.: Theory Exp. , vol.2004 , pp. 04005
    • Daley, A.J.1
  • 33
    • 19444381068 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.93.076401
    • S. R. White, Phys. Rev. Lett. 93, 076401 (2004). 10.1103/PhysRevLett.93. 076401
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 076401
    • White, S.R.1
  • 34
    • 66649085766 scopus 로고    scopus 로고
    • The switching on can be performed on a relatively short time scale of the order of 100/J, whereas the relaxation process is more critical and has been performed on the order of 400/J.
    • The switching on can be performed on a relatively short time scale of the order of 100/J, whereas the relaxation process is more critical and has been performed on the order of 400/J.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.