-
2
-
-
66549107937
-
The storage lifetime of removable media - Backup/ Restore
-
Chesher, M. The storage lifetime of removable media - Backup/ Restore. Comput. Technol. Rev. 2003.
-
(2003)
Comput. Technol. Rev
-
-
Chesher, M.1
-
4
-
-
7544219500
-
-
Lee, S. W.; Lee, D. S.; Morjan, R. E.; Jhang, S. H.; Sveningsson, M.;Nerushev, O. A.; Park, Y. W.; Campbell, E. E. B. Nano Lett. 2004, 4, 2027.
-
(2004)
Nano Lett
, vol.4
, pp. 2027
-
-
Lee, S.W.1
Lee, D.S.2
Morjan, R.E.3
Jhang, S.H.4
Sveningsson, M.5
Nerushev, O.A.6
Park, Y.W.7
Campbell, E.E.B.8
-
5
-
-
0034617249
-
-
Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C.-L.; Lieber, C. M. Science 2000, 289,94.
-
(2000)
Science
, vol.289
, pp. 94
-
-
Rueckes, T.1
Kim, K.2
Joselevich, E.3
Tseng, G.Y.4
Cheung, C.-L.5
Lieber, C.M.6
-
6
-
-
33745762811
-
-
Deshpande, V. V.; Chiu, H.-Y.; Postma, H. W. C.; Miko, C.; Forro, L.; Bockrath, M. Nano Lett. 2006, 6, 1092.
-
(2006)
Nano Lett
, vol.6
, pp. 1092
-
-
Deshpande, V.V.1
Chiu, H.-Y.2
Postma, H.W.C.3
Miko, C.4
Forro, L.5
Bockrath, M.6
-
8
-
-
2342437023
-
-
Regan, B. C.; Aloni, S.; Ritchie, R. O.; Dahmen, U.; Zettl, A. Nature 2004, 428, 924.
-
(2004)
Nature
, vol.428
, pp. 924
-
-
Regan, B.C.1
Aloni, S.2
Ritchie, R.O.3
Dahmen, U.4
Zettl, A.5
-
9
-
-
33846867712
-
-
Dong, L. X.; Tao, X. Y.; Zhang, L.; Zhang, X. B.; Nelson, B. J. Nano Lett. 2007, 7,58.
-
(2007)
Nano Lett
, vol.7
, pp. 58
-
-
Dong, L.X.1
Tao, X.Y.2
Zhang, L.3
Zhang, X.B.4
Nelson, B.J.5
-
10
-
-
37849004905
-
-
Jin, C. H.; Suenaga, K.; Iijima, S. Nat. Nanotechnol. 2008, 3,17.
-
(2008)
Nat. Nanotechnol
, vol.3
, pp. 17
-
-
Jin, C.H.1
Suenaga, K.2
Iijima, S.3
-
11
-
-
20844457748
-
-
Jensen, K.; Mickelson, W.; Han, W.; Zettl, A. Appl. Phys. Lett. 2005, 86, 173107.
-
(2005)
Appl. Phys. Lett
, vol.86
, pp. 173107
-
-
Jensen, K.1
Mickelson, W.2
Han, W.3
Zettl, A.4
-
12
-
-
19644400897
-
-
Svensson, K.; Olin, H.; Olsson, E. Phys. Rev. Lett. 2004, 93, 145901.
-
(2004)
Phys. Rev. Lett
, vol.93
, pp. 145901
-
-
Svensson, K.1
Olin, H.2
Olsson, E.3
-
13
-
-
66549095699
-
-
In cases where the nanotube contains severe internal defect structure, the nanoparticle can become pinned to the defect, compromising reversibility. In high-quality nanotubes with smooth bores, such pinning is not observed
-
In cases where the nanotube contains severe internal defect structure, the nanoparticle can become pinned to the defect, compromising reversibility. In high-quality nanotubes with smooth bores, such pinning is not observed.
-
-
-
-
14
-
-
35348945753
-
-
Kumar, P.; Yuan, X. H.; Kumar, M. R.; Kind, R.; Li, X. Q.; Chadha, R. K. Nature 2007, 449, 894.
-
(2007)
Nature
, vol.449
, pp. 894
-
-
Kumar, P.1
Yuan, X.H.2
Kumar, M.R.3
Kind, R.4
Li, X.Q.5
Chadha, R.K.6
-
16
-
-
18444414585
-
-
Nishikawa, S.; Homma, K.; Komori, Y.; Iwaki, M.; Wazawa, T.; Hikikoshi Iwone, A.; Saito, J.; Ikebe, R.; Katayama, E.; Yanagida, T.; Ikebe, M. Biochem. Biophys. Res. Commun. 2002, 290, 311.
-
(2002)
Biochem. Biophys. Res. Commun
, vol.290
, pp. 311
-
-
Nishikawa, S.1
Homma, K.2
Komori, Y.3
Iwaki, M.4
Wazawa, T.5
Hikikoshi Iwone, A.6
Saito, J.7
Ikebe, R.8
Katayama, E.9
Yanagida, T.10
Ikebe, M.11
-
17
-
-
66549116314
-
-
The signal has been linear-drift corrected to account for contact annealing
-
The signal has been linear-drift corrected to account for contact annealing.
-
-
-
-
18
-
-
0032511085
-
-
Frank, S.; Poncharal, P.; Wang, Z. L.; de Heer, W. A. Science 1998, 280, 1744.
-
(1998)
Science
, vol.280
, pp. 1744
-
-
Frank, S.1
Poncharal, P.2
Wang, Z.L.3
de Heer, W.A.4
-
19
-
-
0001322575
-
-
Choi, H. J.; Ihm, J.; Yoon, Y. G.; Louie, S. G. Phys. Rev.B 1999, 60, 14009.
-
(1999)
Phys. Rev.B
, vol.60
, pp. 14009
-
-
Choi, H.J.1
Ihm, J.2
Yoon, Y.G.3
Louie, S.G.4
-
20
-
-
19744381916
-
-
Bourlon, B.; Miko, C.; Forro, L.; Glattli, D. C.; Bachtold, A. Phys. Rev. Lett. 2004, 93, 176806.
-
(2004)
Phys. Rev. Lett
, vol.93
, pp. 176806
-
-
Bourlon, B.1
Miko, C.2
Forro, L.3
Glattli, D.C.4
Bachtold, A.5
-
21
-
-
33846357800
-
-
Yuzvinsky, T. D.; Mickelson, W.; Aloni, S.; Begtrup, G. E.; Kis, A.; Zettl, A. Nano Lett. 2006, 6, 2718.
-
(2006)
Nano Lett
, vol.6
, pp. 2718
-
-
Yuzvinsky, T.D.1
Mickelson, W.2
Aloni, S.3
Begtrup, G.E.4
Kis, A.5
Zettl, A.6
-
22
-
-
66549118439
-
-
Note that the local electric field near the inclusion may be larger than the average field between the electrodes if the vicinity of the inclusion experiences enhanced Ohmic dissipation
-
Note that the local electric field near the inclusion may be larger than the average field between the electrodes if the vicinity of the inclusion experiences enhanced Ohmic dissipation.
-
-
-
-
23
-
-
66549085465
-
-
Even the extremely smooth interface between two incommensurate graphenic layers can develop some kinetic shear resistance due to structural relaxation24 and the iron-tube wall interaction is likely to be stronger than the interaction between two sp-2 carbon layers. Also, the iron lattice is more amenable to in-plane structural relaxation than is an extremely stiff sp-2 carbon lattice
-
24 and the iron-tube wall interaction is likely to be stronger than the interaction between two sp-2 carbon layers. Also, the iron lattice is more amenable to in-plane structural relaxation than is an extremely stiff sp-2 carbon lattice.
-
-
-
-
24
-
-
1842505269
-
-
Kolmogorov, A. N.; Crespi, V. H.; Schleier-Smith, M. H.; Ellenbogen, J. C. Phys. Rev. Lett. 2004, 92, 085503.
-
(2004)
Phys. Rev. Lett
, vol.92
, pp. 085503
-
-
Kolmogorov, A.N.1
Crespi, V.H.2
Schleier-Smith, M.H.3
Ellenbogen, J.C.4
|