메뉴 건너뛰기




Volumn 79, Issue 5, 2009, Pages

Local temperature in quantum thermal states

Author keywords

[No Author keywords available]

Indexed keywords

BLOCK SIZES; CLASSICAL BEHAVIOR; CLASSICAL SYSTEMS; ENERGY-CONSTRAINED; FIGURE OF MERIT; GLOBAL TEMPERATURES; HIGH FIDELITY; LOCAL TEMPERATURE; LOW TEMPERATURES; QUANTUM FEATURES; QUANTUM FIDELITY; QUANTUM PHASE TRANSITIONS; QUANTUM SPIN; QUANTUM SYSTEM; THERMAL EQUILIBRIUMS; THERMAL STATE; ZERO TEMPERATURES;

EID: 66349123840     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.79.052340     Document Type: Article
Times cited : (29)

References (28)
  • 1
    • 12444320554 scopus 로고    scopus 로고
    • For a historical introduction, see Springer, New York
    • For a historical introduction, see J. Gemmer, M. Michel, and G. Mahler, Quantum Thermodynamics (Springer, New York, 2004), and references therein.
    • (2004) Quantum Thermodynamics
    • Gemmer, J.1    Michel, M.2    Mahler, G.3
  • 2
    • 4244156556 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.80.1373
    • H. Tasaki, Phys. Rev. Lett. 80, 1373 (1998). 10.1103/PhysRevLett.80.1373
    • (1998) Phys. Rev. Lett. , vol.80 , pp. 1373
    • Tasaki, H.1
  • 8
  • 9
    • 33646759564 scopus 로고    scopus 로고
    • 10.1080/00107510600581136
    • M. Hartmann, Contemp. Phys. 47, 89 (2006). 10.1080/00107510600581136
    • (2006) Contemp. Phys. , vol.47 , pp. 89
    • Hartmann, M.1
  • 12
    • 33749345011 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.74.031123
    • P. Zanardi and N. Paunkovic, Phys. Rev. E 74, 031123 (2006). 10.1103/PhysRevE.74.031123
    • (2006) Phys. Rev. e , vol.74 , pp. 031123
    • Zanardi, P.1    Paunkovic, N.2
  • 13
    • 33846134423 scopus 로고    scopus 로고
    • 10.1209/epl/i2006-10388-9
    • S. O. Skrovseth, Europhys. Lett. 76, 1179 (2006). 10.1209/epl/i2006- 10388-9
    • (2006) Europhys. Lett. , vol.76 , pp. 1179
    • Skrovseth, S.O.1
  • 16
    • 66349135211 scopus 로고    scopus 로고
    • In this paper, we take as measure of distance between two quantum states the Uhlmann fidelity, defined as FU (ρ1, ρ2) =Tr (ρ1 ρ2 ρ1) 1/2. We stress that other measurements of proximity between states, such as the fidelity functions derived from the trace distance, FTr (ρ1, ρ2) =1- 1 2 Tr [| ρ1 - ρ2 |], or the Hilbert-Schmidt distance FHS (ρ1, ρ2) =1- 1 2 Tr [(ρ1 - ρ2) 2], or the relative entropy S (ρ1 ρ2) =Tr [ρ1 (log ρ1 -log ρ2)], lead to the same main results.
    • In this paper, we take as measure of distance between two quantum states the Uhlmann fidelity, defined as FU (ρ1, ρ2) =Tr (ρ1 ρ2 ρ1) 1/2. We stress that other measurements of proximity between states, such as the fidelity functions derived from the trace distance, FTr (ρ1, ρ2) =1- 1 2 Tr [| ρ1 - ρ2 |], or the Hilbert-Schmidt distance FHS (ρ1, ρ2) =1- 1 2 Tr [(ρ1 - ρ2) 2], or the relative entropy S (ρ1 ρ2) =Tr [ρ1 (log ρ1 -log ρ2)], lead to the same main results.
  • 17
    • 84924581223 scopus 로고    scopus 로고
    • Cambridge University Press, Cambridge, England
    • S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999).
    • (1999) Quantum Phase Transitions
    • Sachdev, S.1
  • 19
    • 8644277736 scopus 로고
    • 10.1103/PhysRevA.3.786
    • E. Barouch and B. McCoy, Phys. Rev. A 3, 786 (1971). 10.1103/PhysRevA.3. 786
    • (1971) Phys. Rev. A , vol.3 , pp. 786
    • Barouch, E.1    McCoy, B.2
  • 20
    • 0036757880 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.66.032110
    • T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110 (2002). 10.1103/PhysRevA.66.032110
    • (2002) Phys. Rev. A , vol.66 , pp. 032110
    • Osborne, T.J.1    Nielsen, M.A.2
  • 21
    • 34547653542 scopus 로고    scopus 로고
    • We are omitting the local terms since we focus on possible corrections due to interactions at the boundary of the considered block. In this case (i.e., h=0) the model presented in Eq. 12 gives the classical limit of the quantum model. The classical limit of the full quantum Hamiltonian H n can be found in 10.1103/PhysRevB.76.064405
    • We are omitting the local terms since we focus on possible corrections due to interactions at the boundary of the considered block. In this case (i.e., h=0) the model presented in Eq. 12 gives the classical limit of the quantum model. The classical limit of the full quantum Hamiltonian H n can be found in A. Cuccoli, A. Taiti, R. Vaia, and P. Verrucchi, Phys. Rev. B 76, 064405 (2007). However, the analysis of the latter goes beyond the scope of the present paper. 10.1103/PhysRevB.76.064405
    • (2007) Phys. Rev. B , vol.76 , pp. 064405
    • Cuccoli, A.1    Taiti, A.2    Vaia, R.3    Verrucchi, P.4
  • 22
    • 66349119162 scopus 로고    scopus 로고
    • Here we are not considering systems for which an exchange of particles is possible between subparts of them or between the system and its environment.
    • Here we are not considering systems for which an exchange of particles is possible between subparts of them or between the system and its environment.
  • 23
    • 66349105193 scopus 로고    scopus 로고
    • Clearly, such an improvement is of relevance only in those cases where the fidelity F [Ω2 (β), ρ 2 (β)] is significantly smaller than 1. In particular, our calculations show an improvement in the fidelity also for h 1. However, in these cases, F [Ω2 (β), ρ 2 (β)] is already almost indistinguishable from 1. The improvement obtained optimizing the local temperature is then insignificant.
    • Clearly, such an improvement is of relevance only in those cases where the fidelity F [Ω2 (β), ρ 2 (β)] is significantly smaller than 1. In particular, our calculations show an improvement in the fidelity also for h 1. However, in these cases, F [Ω2 (β), ρ 2 (β)] is already almost indistinguishable from 1. The improvement obtained optimizing the local temperature is then insignificant.
  • 26
    • 19744365684 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.93.207205
    • M. Zwolak and G. Vidal, Phys. Rev. Lett. 93, 207205 (2004). 10.1103/PhysRevLett.93.207205
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 207205
    • Zwolak, M.1    Vidal, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.