-
1
-
-
0039730925
-
-
See, for example, the following focus issue: 10.1063/1.165949
-
See, for example, the following focus issue: E. Ott and T. Tél, Chaos 3, 417 (1993). 10.1063/1.165949
-
(1993)
Chaos
, vol.3
, pp. 417
-
-
Ott, E.1
Tél, T.2
-
2
-
-
0001760199
-
-
Some representative early papers on chaotic scattering are: 10.1088/0305-4470/19/8/016;
-
Some representative early papers on chaotic scattering are: C. Jung, J. Phys. A 19, 1345 (1986) 10.1088/0305-4470/19/8/016
-
(1986)
J. Phys. A
, vol.19
, pp. 1345
-
-
Jung, C.1
-
3
-
-
0000446012
-
-
10.1016/S0167-2789(98)90015-X;
-
M. Hénon, Physica D 33, 132 (1988) 10.1016/S0167-2789(98)90015-X
-
(1988)
Physica D
, vol.33
, pp. 132
-
-
Hénon, M.1
-
5
-
-
0002635092
-
-
10.1016/0167-2789(89)90095-X
-
G. Troll and U. Smilansky, Physica D 35, 34 (1989). 10.1016/0167-2789(89) 90095-X
-
(1989)
Physica D
, vol.35
, pp. 34
-
-
Troll, G.1
Smilansky, U.2
-
7
-
-
0000350016
-
-
10.1103/PhysRevA.42.7025
-
M. Ding, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. A 42, 7025 (1990). 10.1103/PhysRevA.42.7025
-
(1990)
Phys. Rev. A
, vol.42
, pp. 7025
-
-
Ding, M.1
Grebogi, C.2
Ott, E.3
Yorke, J.A.4
-
8
-
-
33745687604
-
-
10.1103/PhysRevE.65.015205
-
A. E. Motter and Y. C. Lai, Phys. Rev. E 65, 015205 (R) (2001). 10.1103/PhysRevE.65.015205
-
(2001)
Phys. Rev. e
, vol.65
, pp. 015205
-
-
Motter, A.E.1
Lai, Y.C.2
-
9
-
-
33745711701
-
-
10.1063/1.2173342
-
J. M. Seoane, J. Aguirre, M. A. F. Sanjuán, and Y.-C. Lai, Chaos 16, 023101 (2006). 10.1063/1.2173342
-
(2006)
Chaos
, vol.16
, pp. 023101
-
-
Seoane, J.M.1
Aguirre, J.2
Sanjuán, M.A.F.3
Lai, Y.-C.4
-
14
-
-
66349117144
-
-
This has been demonstrated numerically in Ref..
-
This has been demonstrated numerically in Ref..
-
-
-
-
19
-
-
0000180546
-
-
10.1016/0167-2789(91)90234-Z;
-
J. Kennedy and J. A. Yorke, Physica D 51, 213 (1991) 10.1016/0167- 2789(91)90234-Z
-
(1991)
Physica D
, vol.51
, pp. 213
-
-
Kennedy, J.1
Yorke, J.A.2
-
20
-
-
0031143710
-
-
10.1016/S0378-4371(96)00482-7;
-
Z. Toroczkai, G. Károlyi, A. Péntek, T. Tél, C. Grebogi, and J. A. Yorke, Physica A 239, 235 (1997) 10.1016/S0378-4371(96)00482- 7
-
(1997)
Physica A
, vol.239
, pp. 235
-
-
Toroczkai, Z.1
Károlyi, G.2
Péntek, A.3
Tél, T.4
Grebogi, C.5
Yorke, J.A.6
-
21
-
-
33645090097
-
-
10.1063/1.166244;
-
M. A. F. Sanjuán, J. Kennedy, C. Grebogi, and J. A. Yorke, Chaos 7, 125 (1997) 10.1063/1.166244
-
(1997)
Chaos
, vol.7
, pp. 125
-
-
Sanjuán, M.A.F.1
Kennedy, J.2
Grebogi, C.3
Yorke, J.A.4
-
22
-
-
0002954435
-
-
10.1016/S0166-8641(98)00032-7;
-
J. Kennedy, M. A. F. Sanjuán, J. A. Yorke, and C. Grebogi, Topology and Its Applications 94, 207 (1999) 10.1016/S0166-8641(98)00032-7
-
(1999)
Topology and Its Applications
, vol.94
, pp. 207
-
-
Kennedy, J.1
Sanjuán, M.A.F.2
Yorke, J.A.3
Grebogi, C.4
-
23
-
-
1442297962
-
-
10.1126/science.271.5254.1376;
-
H. E. Nusse and J. A. Yorke, Science 271, 1376 (1996) 10.1126/science.271.5254.1376
-
(1996)
Science
, vol.271
, pp. 1376
-
-
Nusse, H.E.1
Yorke, J.A.2
-
24
-
-
22244438255
-
-
10.1016/0167-2789(95)00249-9;
-
H. E. Nusse and J. A. Yorke, Physica D 90, 242 (1996) 10.1016/0167-2789(95)00249-9
-
(1996)
Physica D
, vol.90
, pp. 242
-
-
Nusse, H.E.1
Yorke, J.A.2
-
26
-
-
0036776548
-
-
10.1016/S0167-2789(02)00565-1
-
J. Aguirre and M. A. F. Sanjuán, Physica D 171, 41 (2002). 10.1016/S0167-2789(02)00565-1
-
(2002)
Physica D
, vol.171
, pp. 41
-
-
Aguirre, J.1
Sanjuán, M.A.F.2
-
28
-
-
0020814903
-
-
10.1016/0167-2789(83)90232-4;
-
C. F. F. Karney, Physica D 8, 360 (1983) 10.1016/0167-2789(83)90232-4
-
(1983)
Physica D
, vol.8
, pp. 360
-
-
Karney, C.F.F.1
-
30
-
-
46149130013
-
-
10.1016/0167-2789(86)90041-2;
-
J. Meiss and E. Ott, Physica D 20, 387 (1986) 10.1016/0167-2789(86)90041- 2
-
(1986)
Physica D
, vol.20
, pp. 387
-
-
Meiss, J.1
Ott, E.2
-
31
-
-
0001656616
-
-
10.1103/PhysRevA.46.4661
-
Y.-C. Lai, M. Ding, C. Grebogi, and R. Blümel, Phys. Rev. A 46, 4661 (1992). 10.1103/PhysRevA.46.4661
-
(1992)
Phys. Rev. A
, vol.46
, pp. 4661
-
-
Lai, Y.-C.1
Ding, M.2
Grebogi, C.3
Blümel, R.4
-
32
-
-
66349104975
-
-
This has been tested numerically on a damped harmonic oscillator in a noisy environment.
-
This has been tested numerically on a damped harmonic oscillator in a noisy environment.
-
-
-
-
33
-
-
66349120914
-
-
Defining T0 =1/γ, we have R (t) ∼ e-T/ T0. The average lifetime of the particles is T = T R (T) dT = T0, which depends on initial energy E. In general, we can write T0 =g (E) or γ=f (E).
-
Defining T0 =1/γ, we have R (t) ∼ e-T/ T0. The average lifetime of the particles is T = T R (T) dT = T0, which depends on initial energy E. In general, we can write T0 =g (E) or γ=f (E).
-
-
-
|