-
2
-
-
0142151450
-
-
10.1557/JMR.1998.0205
-
W. J. Weber, J. Mater. Res. 13, 1434 (1998). 10.1557/JMR.1998.0205
-
(1998)
J. Mater. Res.
, vol.13
, pp. 1434
-
-
Weber, W.J.1
-
3
-
-
0034829870
-
-
10.1016/S0022-3115(00)00693-0
-
G. R. Lumpkin, J. Nucl. Mater. 289, 136 (2001). 10.1016/S0022-3115(00) 00693-0
-
(2001)
J. Nucl. Mater.
, vol.289
, pp. 136
-
-
Lumpkin, G.R.1
-
4
-
-
0034604486
-
-
10.1126/science.289.5480.748
-
K. E. Sickafus, Science 289, 748 (2000). 10.1126/science.289.5480.748
-
(2000)
Science
, vol.289
, pp. 748
-
-
Sickafus, K.E.1
-
5
-
-
33847638789
-
-
10.1038/nmat1842
-
K. E. Sickafus, Nature Mater. 6, 217 (2007). 10.1038/nmat1842
-
(2007)
Nature Mater.
, vol.6
, pp. 217
-
-
Sickafus, K.E.1
-
8
-
-
0042113153
-
-
10.1103/PhysRev.140.A1133
-
W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965). 10.1103/PhysRev.140. A1133
-
(1965)
Phys. Rev.
, vol.140
, pp. 1133
-
-
Kohn, W.1
Sham, L.2
-
9
-
-
0011236321
-
-
10.1103/PhysRevB.59.1758
-
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). 10.1103/PhysRevB.59.1758
-
(1999)
Phys. Rev. B
, vol.59
, pp. 1758
-
-
Kresse, G.1
Joubert, D.2
-
11
-
-
0000214080
-
-
10.1103/PhysRevLett.65.353
-
A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, Phys. Rev. Lett. 65, 353 (1990). 10.1103/PhysRevLett.65.353
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 353
-
-
Zunger, A.1
Wei, S.H.2
Ferreira, L.G.3
Bernard, J.E.4
-
12
-
-
20344379296
-
-
10.1103/PhysRevB.42.9622
-
S. H. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger, Phys. Rev. B 42, 9622 (1990). 10.1103/PhysRevB.42.9622
-
(1990)
Phys. Rev. B
, vol.42
, pp. 9622
-
-
Wei, S.H.1
Ferreira, L.G.2
Bernard, J.E.3
Zunger, A.4
-
13
-
-
42749105013
-
-
10.1103/PhysRevB.69.214202
-
C. Jiang, C. Wolverton, J. Sofo, L. Q. Chen, and Z. K. Liu, Phys. Rev. B 69, 214202 (2004). 10.1103/PhysRevB.69.214202
-
(2004)
Phys. Rev. B
, vol.69
, pp. 214202
-
-
Jiang, C.1
Wolverton, C.2
Sofo, J.3
Chen, L.Q.4
Liu, Z.K.5
-
14
-
-
17644392431
-
-
10.1016/j.actamat.2005.02.026
-
C. Jiang, L. Q. Chen, and Z. K. Liu, Acta Mater. 53, 2643 (2005). 10.1016/j.actamat.2005.02.026
-
(2005)
Acta Mater.
, vol.53
, pp. 2643
-
-
Jiang, C.1
Chen, L.Q.2
Liu, Z.K.3
-
15
-
-
0034274245
-
-
10.1016/S0022-3115(00)00191-4
-
N. J. Hess, F. J. Espinosa, S. D. Conradson, and W. J. Weber, J. Nucl. Mater. 281, 22 (2000). 10.1016/S0022-3115(00)00191-4
-
(2000)
J. Nucl. Mater.
, vol.281
, pp. 22
-
-
Hess, N.J.1
Espinosa, F.J.2
Conradson, S.D.3
Weber, W.J.4
-
16
-
-
66349119118
-
-
The Ba recoil energy from the C 137 s decay is only 8 eV, which is much smaller than the displacement threshold energy of most materials. Also, while CsCl is susceptible to radiolysis, the dose rate from the decay is relatively small and would be mitigated as the Cs1-x Bax Cl becomes metallic.
-
The Ba recoil energy from the C 137 s decay is only 8 eV, which is much smaller than the displacement threshold energy of most materials. Also, while CsCl is susceptible to radiolysis, the dose rate from the decay is relatively small and would be mitigated as the Cs1-x Bax Cl becomes metallic.
-
-
-
-
17
-
-
0036813930
-
-
10.1103/PhysRevB.66.144112
-
M. Florez, J. M. Recio, E. Francisco, M. A. Blanco, and A. M. Pendas, Phys. Rev. B 66, 144112 (2002). 10.1103/PhysRevB.66.144112
-
(2002)
Phys. Rev. B
, vol.66
, pp. 144112
-
-
Florez, M.1
Recio, J.M.2
Francisco, E.3
Blanco, M.A.4
Pendas, A.M.5
-
19
-
-
0001758735
-
-
10.1103/PhysRevB.57.11164
-
C. E. Sims, G. D. Barrera, N. L. Allan, and W. C. Mackrodt, Phys. Rev. B 57, 11164 (1998). 10.1103/PhysRevB.57.11164
-
(1998)
Phys. Rev. B
, vol.57
, pp. 11164
-
-
Sims, C.E.1
Barrera, G.D.2
Allan, N.L.3
MacKrodt, W.C.4
-
21
-
-
66349095856
-
-
LDA predicts the orthorhombic BaCl2 to be energetically more favorable than the fluorite BaCl2, in agreement with the experimental phase diagram.
-
LDA predicts the orthorhombic BaCl2 to be energetically more favorable than the fluorite BaCl2, in agreement with the experimental phase diagram.
-
-
-
-
22
-
-
66349132335
-
-
In searching for the ground-state structure of BaCl, we have also considered other possible candidate structures, including NiAs (B 81), wurtzite (B4), and WC (Bh). Our calculations identify rocksalt-type BaCl to be energetically the most stable. For the intermediate compositions, we have only considered the B1, B2, and B3 structures. Since the other structures are energetically unfavorable for both CsCl and BaCl and the behavior of B1, B2, and B3 is monotonic versus Ba content, we do not expect other structures to be important at intermediate compositions.
-
In searching for the ground-state structure of BaCl, we have also considered other possible candidate structures, including NiAs (B 81), wurtzite (B4), and WC (Bh). Our calculations identify rocksalt-type BaCl to be energetically the most stable. For the intermediate compositions, we have only considered the B1, B2, and B3 structures. Since the other structures are energetically unfavorable for both CsCl and BaCl and the behavior of B1, B2, and B3 is monotonic versus Ba content, we do not expect other structures to be important at intermediate compositions.
-
-
-
-
24
-
-
38849174577
-
-
10.1063/1.2838345
-
C. Jiang, Appl. Phys. Lett. 92, 041909 (2008). 10.1063/1.2838345
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 041909
-
-
Jiang, C.1
-
26
-
-
34547275277
-
-
10.1063/1.2747230
-
E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Yu. Kh. Vekilov, M. I. Katsnelson, A. I. Lichtenstein, and B. Johansson, J. Appl. Phys. 101, 123519 (2007). 10.1063/1.2747230
-
(2007)
J. Appl. Phys.
, vol.101
, pp. 123519
-
-
Isaev, E.I.1
Simak, S.I.2
Abrikosov, I.A.3
Ahuja, R.4
Vekilov, Kh.5
Katsnelson, M.I.6
Lichtenstein, A.I.7
Johansson, B.8
-
27
-
-
0001367240
-
-
10.1103/PhysRevLett.69.2799
-
S. Q. Wei and M. Y. Chou, Phys. Rev. Lett. 69, 2799 (1992). 10.1103/PhysRevLett.69.2799
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 2799
-
-
Wei, S.Q.1
Chou, M.Y.2
|