-
1
-
-
66349128926
-
-
D. Gnanadurai and V. Sadasivam, Image de-noising using double density wavelet transform based adaptive thresholding technique, Int. J. Wavelets Multiresolut. Inf. Process. 3(1) (2005) 141-152.
-
D. Gnanadurai and V. Sadasivam, Image de-noising using double density wavelet transform based adaptive thresholding technique, Int. J. Wavelets Multiresolut. Inf. Process. 3(1) (2005) 141-152.
-
-
-
-
2
-
-
33748969560
-
-
L. Li and Y. Tang, Wavelet-Hough transform with applications edge and target detections, Int. J. Wavelets Multiresolut. Inf. Process. 4(3) (2006) 567-587.
-
L. Li and Y. Tang, Wavelet-Hough transform with applications edge and target detections, Int. J. Wavelets Multiresolut. Inf. Process. 4(3) (2006) 567-587.
-
-
-
-
3
-
-
36048942793
-
-
L. Zhang, Rotational wavelet bank for edge detection, Int. J. Wavelets Multiresolut. Inf. Process. 5(6) (2007) 917-926.
-
L. Zhang, Rotational wavelet bank for edge detection, Int. J. Wavelets Multiresolut. Inf. Process. 5(6) (2007) 917-926.
-
-
-
-
4
-
-
44349185423
-
-
L. Zeng, R. Ma, J. Huang and P. R. Hunziken, The construction of 2D rotationally invariant wavelets and their application in image edge detection, Int. J. Wavelets Multiresolut. Inf. Process. 6(1) (2008) 65-82.
-
L. Zeng, R. Ma, J. Huang and P. R. Hunziken, The construction of 2D rotationally invariant wavelets and their application in image edge detection, Int. J. Wavelets Multiresolut. Inf. Process. 6(1) (2008) 65-82.
-
-
-
-
5
-
-
48349096540
-
-
Z. Shang, Y. Tang, B. Fang, J.Wen and Y. Zhou, Multiresolution signal decomposition and approximation based on support vector machines, Int. J. Wavelets Multiresolut. Inf. Process. 6(4) (2008) 593-607.
-
Z. Shang, Y. Tang, B. Fang, J.Wen and Y. Zhou, Multiresolution signal decomposition and approximation based on support vector machines, Int. J. Wavelets Multiresolut. Inf. Process. 6(4) (2008) 593-607.
-
-
-
-
6
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
I. Daubechies, Orthonormal bases of compactly supported wavelets, Commun. Pure Appl. Math. 41(7) (1988) 909-996.
-
(1988)
Commun. Pure Appl. Math
, vol.41
, Issue.7
, pp. 909-996
-
-
Daubechies, I.1
-
7
-
-
0024700097
-
A theory for multiresolution decomposition: The wavelet representation
-
S. Mallat, A theory for multiresolution decomposition: The wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell. 11 7) (1989) 374-693.
-
(1989)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.11
, Issue.7
, pp. 374-693
-
-
Mallat, S.1
-
8
-
-
0024904699
-
Multifrequency channel decompositions of images and wavelet models
-
S. Mallat, Multifrequency channel decompositions of images and wavelet models, IEEE Trans. Acoust. Speech Signal Process. 37(12) (1989) 2091-2110.
-
(1989)
IEEE Trans. Acoust. Speech Signal Process
, vol.37
, Issue.12
, pp. 2091-2110
-
-
Mallat, S.1
-
10
-
-
84898785264
-
Characterization of signals from multiscale edges
-
S. Mallat and S. Zhong, Characterization of signals from multiscale edges, IEEE Trans. Pattern Anal. Mach. Intell. 14(7) (1992) 710-732.
-
(1992)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.14
, Issue.7
, pp. 710-732
-
-
Mallat, S.1
Zhong, S.2
-
11
-
-
0029307534
-
De-noising via soft-thresholding
-
D. L. Donoho, De-noising via soft-thresholding, IEEE Trans. Info. Theory 41(3) (1992) 613-627.
-
(1992)
IEEE Trans. Info. Theory
, vol.41
, Issue.3
, pp. 613-627
-
-
Donoho, D.L.1
-
12
-
-
33745956128
-
Signal de-noising in wavelet domain based on a new kind of thresholding function
-
W. Zhang and G. Song, Signal de-noising in wavelet domain based on a new kind of thresholding function, J. Xidian Univ. 31(2) (2004) 57-65.
-
(2004)
J. Xidian Univ
, vol.31
, Issue.2
, pp. 57-65
-
-
Zhang, W.1
Song, G.2
|