메뉴 건너뛰기




Volumn 6, Issue 4, 2009, Pages 684-693

Multi step ahead prediction of North and South hemisphere sun spots chaotic time series using focused time lagged recurrent neural network model

Author keywords

Focused time lagged neural network (FTLRNN); Multi step prediction; Multilayer perception (MLP); Self organizing feature map (SOFM); Sunspots chaotic time series

Indexed keywords

FOCUSED TIME LAGGED NEURAL NETWORK (FTLRNN); MULTI-STEP PREDICTION; MULTILAYER PERCEPTION (MLP); SELF ORGANIZING FEATURE MAP (SOFM); SUNSPOTS CHAOTIC TIME SERIES;

EID: 66349102043     PISSN: 17900832     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (10)

References (41)
  • 1
    • 0002405886 scopus 로고
    • Nonlinear prediction of speech signals
    • M. Casdagli and S. Eubank, Eds. Reading MA: Addison-Wesley pp
    • B. Townshend, 1992: Nonlinear prediction of speech signals, in Nonlinear modeling and Forecasting, M. Casdagli and S. Eubank, Eds. Reading MA: Addison-Wesley pp 433-453.
    • (1992) Nonlinear modeling and Forecasting , pp. 433-453
    • Townshend, B.1
  • 2
    • 66349101731 scopus 로고    scopus 로고
    • P.G. Cooper, M.N. Hays, and J.E. Whalen, Neural networks for propagation modeling,Electromagnetic Environmental Test facility, Fort Huachuca, AZ, Atlantic Res Corp, Rep. 92-12-002, 1992
    • P.G. Cooper, M.N. Hays, and J.E. Whalen, "Neural networks for propagation modeling,"Electromagnetic Environmental Test facility, Fort Huachuca, AZ, Atlantic Res Corp, Rep. 92-12-002, 1992
  • 3
    • 66349097300 scopus 로고    scopus 로고
    • Haykin, S., Neural Networks, 2006 -A comprehensive foundation, Second Edition, Pearson Education India, pp.443.
    • Haykin, S., Neural Networks, 2006 -A comprehensive foundation, Second Edition, Pearson Education India, pp.443.
  • 5
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • M.Casdagli,1989. Nonlinear prediction of chaotic time series, Phys. D, vol 35, pp 335-356.
    • (1989) Phys. D , vol.35 , pp. 335-356
    • Casdagli, M.1
  • 6
    • 0027632108 scopus 로고    scopus 로고
    • Leung H. and Lo T., July 1993. Chaotic radar signal processing over the sea. IEEE J, Oceanic Eng., 18 issue 3 pp 287-295.,ISSN no 0364-9059
    • Leung H. and Lo T., July 1993. Chaotic radar signal processing over the sea. IEEE J, Oceanic Eng., Vol.18 issue 3 pp 287-295.,ISSN no 0364-9059
  • 7
    • 0029184794 scopus 로고
    • Applying Chaos to radar detection in an ocean environment An Experimental study
    • H. Leung, 1995. Applying Chaos to radar detection in an ocean environment An Experimental study, IEEE Journal of Oceanic Eng., vol. 20 pp56-64.
    • (1995) IEEE Journal of Oceanic Eng , vol.20 , pp. 56-64
    • Leung, H.1
  • 9
    • 0028369325 scopus 로고
    • A chaotic direct sequence spread spectrum communication system
    • G. Heidari- Bateni and C.D. McGillen, 1994. A chaotic direct sequence spread spectrum communication system, IEEE transactions communications, Vol 42. pp 1524-1527.
    • (1994) IEEE transactions communications , vol.42 , pp. 1524-1527
    • Heidari- Bateni, G.1    McGillen, C.D.2
  • 10
    • 0035393376 scopus 로고    scopus 로고
    • Narrowband interference cancellation in spread spectrum communication systems using chaos
    • Y. Fu and H. Leung, 2001. Narrowband interference cancellation in spread spectrum communication systems using chaos., IEEE transactions circuits systems,vol. 48,pp847-858.
    • (2001) IEEE transactions circuits systems , vol.48 , pp. 847-858
    • Fu, Y.1    Leung, H.2
  • 11
    • 0024861871 scopus 로고    scopus 로고
    • Cybenko. G., 1989. Approximations by superposition of a sigmoidal functions, Mathematics of Control, Signals and Systems, 2, no 4pp 303-314.
    • Cybenko. G., 1989. Approximations by superposition of a sigmoidal functions, Mathematics of Control, Signals and Systems, Vol 2, no 4pp 303-314.
  • 12
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • K Hornik, M Stinchcombe & H White, Multilayer feed forward networks are universal approximators, Neural networks, vol 2,no 5, pp 359-366, 1989.
    • (1989) Neural networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 13
    • 66349130546 scopus 로고    scopus 로고
    • Prediction of a Lorenz chaotic attractor using two layer perceptron network
    • Dudul Sanjay V., 2005. Prediction of a Lorenz chaotic attractor using two layer perceptron network, Elsevier Journal of Applied soft computing, 5(4) 4333-4355.
    • (2005) Elsevier Journal of Applied soft computing , vol.5 , Issue.4 , pp. 4333-4355
    • Dudul Sanjay, V.1
  • 14
    • 34547395319 scopus 로고    scopus 로고
    • Sanjay V Dudul, February2007. Identification of a Liquid of a Liquid Saturated Steam Heat Exchanger Using Focused Time Lagged Recurrent Neural Network Model, IETE Journal of Research Vol53 No1,pp69-82.
    • Sanjay V Dudul, February2007. Identification of a Liquid of a Liquid Saturated Steam Heat Exchanger Using Focused Time Lagged Recurrent Neural Network Model, IETE Journal of Research Vol53 No1,pp69-82.
  • 15
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • May
    • Barron A. R., May 1993. Universal approximation bounds for superpositions of a sigmoidal function, IEEE Transactions on Information Theory, vol.39, issue 3, pp 930-945.,
    • (1993) IEEE Transactions on Information Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 16
    • 0029482971 scopus 로고
    • Nonlinear black-box models in system identification: Mathematical foundations
    • Judi sky, A., Hjalmarson, H., Benefits, A., Delyon, B., Ljung, L., Sjoberg, J., Zang, Q., 1995. "Nonlinear black-box models in system identification: Mathematical foundations". Automatica, 31(12), pp. 1725-1750.
    • (1995) Automatica , vol.31 , Issue.12 , pp. 1725-1750
    • Judi sky, A.1    Hjalmarson, H.2    Benefits, A.3    Delyon, B.4    Ljung, L.5    Sjoberg, J.6    Zang, Q.7
  • 17
    • 66349126687 scopus 로고    scopus 로고
    • R. and Cor M. Vanden Bleek 2000. attractors by neural network, Neural Computations., 12, pp 2355-2383.
    • R. and Cor M. Vanden Bleek 2000. attractors by neural network, Neural Computations., vol.12, pp 2355-2383.
  • 18
    • 0142017824 scopus 로고    scopus 로고
    • Chaotic time series analysis based on radial basis function network
    • Zeng Zhaocoui, Duan Yurong, 1999. Chaotic time series analysis based on radial basis function network, Chinease Journal of Chongqing University 22(6) 113-120.
    • (1999) Chinease Journal of Chongqing University , vol.22 , Issue.6 , pp. 113-120
    • Zeng, Z.1    Duan, Y.2
  • 19
    • 0035441349 scopus 로고    scopus 로고
    • Prediction of noisy chaotic time series using an optimal radial basis function neural network
    • September
    • H. Leung, T. Lo and S.Wang, September 2001. Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Transactions on neural networks vol 12, no 5, pp1163-1172.
    • (2001) IEEE Transactions on neural networks , vol.12 , Issue.5 , pp. 1163-1172
    • Leung, H.1    Lo, T.2    Wang, S.3
  • 20
    • 0028546555 scopus 로고
    • Neural learning of chaotic system behavior
    • Deco, G and Schurmann M,1994. Neural learning of chaotic system behavior, IEICE Transactions fundamentals E77(A),1840-1845.
    • (1994) IEICE Transactions fundamentals , vol.E77 , Issue.A , pp. 1840-1845
    • Deco, G.1    Schurmann, M.2
  • 21
    • 23044434528 scopus 로고    scopus 로고
    • Billings Stephen A. and Hua- Liang Wei, July 2005. A new class of wavelet network for nonlinear system identification, IEEE transactions on neural networks, 16, No. 4, pp 862-874.
    • Billings Stephen A. and Hua- Liang Wei, July 2005. A new class of wavelet network for nonlinear system identification, IEEE transactions on neural networks, Vol 16, No. 4, pp 862-874.
  • 24
    • 84958978250 scopus 로고    scopus 로고
    • Efficient Hybrid neural network for chaotic time series prediction ICANN2001
    • Springer
    • Hirotoka Inoue, Yashinobou Fukuango and Hiroyuki Narihinsa "Efficient Hybrid neural network for chaotic time series prediction" ICANN2001, LNCS 2130, pp 712-718, Springer.
    • LNCS , vol.2130 , pp. 712-718
    • Inoue, H.1    Fukuango, Y.2    Narihinsa, H.3
  • 25
    • 24944563058 scopus 로고    scopus 로고
    • Study of nonlinear multivariate time series prediction based on neural networks
    • Min Han, Mingming Fan, Jianhui Xi Study of nonlinear multivariate time series prediction based on neural networks LNCS 3497,PP618-623, 2005.
    • (2005) LNCS , vol.3497
    • Han, M.1    Fan, M.2    Xi, J.3
  • 26
    • 0026626377 scopus 로고
    • Comparison of Four Neural Net Learning Methods for Dynamic System Identification
    • ISSN
    • Quin S.Z., Su H T & McAvoy T J, 1992.Comparison of Four Neural Net Learning Methods for Dynamic System Identification, IEEE transactions on Neural networks vol 3, issue 1 pp 122-30., ISSN no. 1045-9227.
    • (1992) IEEE transactions on Neural networks , vol.3 , Issue.1-1045 -9227 , pp. 122-130
    • Quin, S.Z.1    Su, H.T.2    McAvoy, T.J.3
  • 27
    • 0025399567 scopus 로고
    • Identification and control of dynamic systems using neural networks
    • Naraendra K S & Parthasarathy K, 1990. Identification and control of dynamic systems using neural networks, IEEE Trans on Neural Networks, vol 1, no 1, pp 4-27.
    • (1990) IEEE Trans on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Naraendra, K.S.1    Parthasarathy, K.2
  • 28
    • 66349124831 scopus 로고    scopus 로고
    • Demuth & Beale M., Neural Network Tool Box for use with MATLAB, 2004. Users Guide, Version 4.0, The Math works, Inc Natick, MA.,www.mathworks.com.
    • Demuth & Beale M., Neural Network Tool Box for use with MATLAB, 2004. Users Guide, Version 4.0, The Math works, Inc Natick, MA.,www.mathworks.com.
  • 31
    • 0026895542 scopus 로고
    • The Gamma Model,. -A neural model for temporal processing
    • principe βrain
    • Vries, Bert De. & Principe Jose C., 1992 The Gamma Model,. -A neural model for temporal processing. Neural networks, Vol. 5 pp 565-576., principe βrain.ee.ufl.edu.
    • (1992) Neural networks , vol.5 , pp. 565-576
    • Vries, B.D.1    Principe Jose, C.2
  • 32
    • 66349083329 scopus 로고    scopus 로고
    • Principe J.C., Euliano N.R, Inc 2000 Neural and Adaptive Systems - Fundamental through Simulations, John Wiley and Sons.
    • Principe J.C., Euliano N.R, Inc 2000 Neural and Adaptive Systems - Fundamental through Simulations, John Wiley and Sons.
  • 33
    • 0035494005 scopus 로고    scopus 로고
    • Solar cycle forecasting: A nonlinear dynamics approach
    • Sello S., 2001. Solar cycle forecasting: a nonlinear dynamics approach, Astronomy and Astrophysics 377, pp 312-320.
    • (2001) Astronomy and Astrophysics , vol.377 , pp. 312-320
    • Sello, S.1
  • 35
    • 0008607908 scopus 로고    scopus 로고
    • A nonlinear prediction of the smoothed monthly sun spots numbers
    • Zhang Q, 1996. A nonlinear prediction of the smoothed monthly sun spots numbers, Astronomy and Astrophysics 310,646.
    • (1996) Astronomy and Astrophysics , vol.310 , pp. 646
    • Zhang, Q.1
  • 36
    • 0002060398 scopus 로고    scopus 로고
    • Interdisciplinary application of nonlinear time series methods
    • Schreiber, T, 1998: Interdisciplinary application of nonlinear time series methods, Physical Reports 308
    • (1998) Physical Reports , vol.308
    • Schreiber, T.1
  • 37
    • 66349120895 scopus 로고    scopus 로고
    • http://sidc.oma.be/index.hp3.
  • 39
    • 8844232669 scopus 로고    scopus 로고
    • Simulation modeling of multi -parameter sensor signal identification using neural networks
    • Sofia, Bulgaria, pp
    • I. V. Turchenko, June 2004,Simulation modeling of multi -parameter sensor signal identification using neural networks, Proceedings of the 2nd International conference on Intelligent systems, Sofia, Bulgaria, pp 48-53.
    • (2004) Proceedings of the 2nd International conference on Intelligent systems , pp. 48-53
    • Turchenko, I.V.1    June2
  • 40
    • 0034187311 scopus 로고    scopus 로고
    • Huang G., Yan Qiu Chen & Babri H.A.,2000, Classification ability of single hidden layer feed forward neural networks, IEEE Transactions on neural networks, 11 no, pp 799-801.
    • Huang G., Yan Qiu Chen & Babri H.A.,2000, Classification ability of single hidden layer feed forward neural networks, IEEE Transactions on neural networks, vol 11 no, pp 799-801.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.