-
1
-
-
0004138120
-
-
2nd ed. (Springer-Verlag, Berlin
-
R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, 2nd ed. (Springer-Verlag, Berlin, 1991).
-
(1991)
Statistical Physics II
-
-
Kubo, R.1
Toda, M.2
Hashitsume, N.3
-
2
-
-
2542455791
-
-
10.1007/BF01391621
-
G. S. Agarwal, Z. Phys. 252, 25 (1972). 10.1007/BF01391621
-
(1972)
Z. Phys.
, vol.252
, pp. 25
-
-
Agarwal, G.S.1
-
3
-
-
49049141388
-
-
10.1016/0370-1573(82)90045-X
-
P. Hänggi and H. Thomas, Phys. Rep. 88, 207 (1982). 10.1016/0370-1573(82)90045-X
-
(1982)
Phys. Rep.
, vol.88
, pp. 207
-
-
Hänggi, P.1
Thomas, H.2
-
4
-
-
33646435830
-
-
10.1209/epl/i2005-10549-4
-
T. Speck and U. Seifert, Europhys. Lett. 74, 391 (2006). 10.1209/epl/i2005-10549-4
-
(2006)
Europhys. Lett.
, vol.74
, pp. 391
-
-
Speck, T.1
Seifert, U.2
-
6
-
-
34547343705
-
-
10.1103/PhysRevLett.98.210601
-
V. Blickle, T. Speck, C. Lutz, U. Seifert, and C. Bechinger, Phys. Rev. Lett. 98, 210601 (2007). 10.1103/PhysRevLett.98.210601
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 210601
-
-
Blickle, V.1
Speck, T.2
Lutz, C.3
Seifert, U.4
Bechinger, C.5
-
8
-
-
0012043616
-
-
10.1103/PhysRevE.63.012503
-
J. L. Barrat and L. Berthier, Phys. Rev. E 63, 012503 (2000). 10.1103/PhysRevE.63.012503
-
(2000)
Phys. Rev. e
, vol.63
, pp. 012503
-
-
Barrat, J.L.1
Berthier, L.2
-
10
-
-
35948954786
-
-
10.1103/PhysRevLett.99.195701
-
T. K. Haxton and A. J. Liu, Phys. Rev. Lett. 99, 195701 (2007). 10.1103/PhysRevLett.99.195701
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 195701
-
-
Haxton, T.K.1
Liu, A.J.2
-
13
-
-
18144366761
-
-
10.1103/PhysRevLett.93.178301
-
G. Szamel, Phys. Rev. Lett. 93, 178301 (2004). 10.1103/PhysRevLett.93. 178301
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 178301
-
-
Szamel, G.1
-
14
-
-
57649222212
-
-
10.1103/PhysRevLett.101.240601
-
A. Baule and R. M. L. Evans, Phys. Rev. Lett. 101, 240601 (2008). 10.1103/PhysRevLett.101.240601
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 240601
-
-
Baule, A.1
Evans, R.M.L.2
-
15
-
-
65849475092
-
-
Even though hydrodynamic interactions can easily be included in our formalism through symmetric mobility tensors μ ij (I), here, for the sake of brevity, we use μ ij = μ 0 δ ij 1 neglecting any hydrodynamic interaction between the N particles. The bare mobility μ 0 and the short-time diffusion coefficient D0 are connected through the Einstein relation, D0 = μ 0 T.
-
Even though hydrodynamic interactions can easily be included in our formalism through symmetric mobility tensors μ ij (I), here, for the sake of brevity, we use μ ij = μ 0 δ ij 1 neglecting any hydrodynamic interaction between the N particles. The bare mobility μ 0 and the short-time diffusion coefficient D0 are connected through the Einstein relation, D0 = μ 0 T.
-
-
-
-
18
-
-
65849179014
-
-
See EPAPS Document No. E-PLEEE8-79-R06904 for derivation of the dissipation function used in the main text and calculation of the analytical expressions for the correlation and response function of the stress for a Rouse polymer. For more information on EPAPS, see http://www.aip.org/pubservs/epaps. html.
-
See EPAPS Document No. E-PLEEE8-79-R06904 for derivation of the dissipation function used in the main text and calculation of the analytical expressions for the correlation and response function of the stress for a Rouse polymer. For more information on EPAPS, see http://www.aip.org/pubservs/epaps. html.
-
-
-
|