-
1
-
-
0141607701
-
Which graphs are determined by its spectrum?
-
van Dam E.R., and Haemers W.H. Which graphs are determined by its spectrum?. Linear Algebra Appl. 373 (2003) 241-272
-
(2003)
Linear Algebra Appl.
, vol.373
, pp. 241-272
-
-
van Dam, E.R.1
Haemers, W.H.2
-
2
-
-
0742267980
-
Enumeration of cospectral graphs
-
Heamers W., and Spence E. Enumeration of cospectral graphs. European J. Combin. 25 (2004) 199-211
-
(2004)
European J. Combin.
, vol.25
, pp. 199-211
-
-
Heamers, W.1
Spence, E.2
-
3
-
-
33750993774
-
Spectral characterization of graphs with index at most sqrt(2 + sqrt(5))
-
Ghareghani N., Omidi G.R., and Tayfeh-Rezaie B. Spectral characterization of graphs with index at most sqrt(2 + sqrt(5)). Linear Algebra Appl. 420 (2007) 483-489
-
(2007)
Linear Algebra Appl.
, vol.420
, pp. 483-489
-
-
Ghareghani, N.1
Omidi, G.R.2
Tayfeh-Rezaie, B.3
-
4
-
-
31244437055
-
No starlike trees are cospectral
-
Lepović M., and Gutman I. No starlike trees are cospectral. Discrete Math. 242 (2002) 291-295
-
(2002)
Discrete Math.
, vol.242
, pp. 291-295
-
-
Lepović, M.1
Gutman, I.2
-
5
-
-
33847273846
-
Starlike trees are determined by their Laplacian spectrum
-
Omidi G.R., and Tajbakhsh K. Starlike trees are determined by their Laplacian spectrum. Linear Algebra Appl. 422 (2007) 654-658
-
(2007)
Linear Algebra Appl.
, vol.422
, pp. 654-658
-
-
Omidi, G.R.1
Tajbakhsh, K.2
-
7
-
-
33748309452
-
The T-shape tree is determined by its Laplacian spectrum
-
Wang W., and Xu C.X. The T-shape tree is determined by its Laplacian spectrum. Linear Algebra Appl. 419 (2006) 78-81
-
(2006)
Linear Algebra Appl.
, vol.419
, pp. 78-81
-
-
Wang, W.1
Xu, C.X.2
-
8
-
-
52149104028
-
On a Laplacian spectral characterization of graphs of index less than 2
-
Omidi G.R. On a Laplacian spectral characterization of graphs of index less than 2. Linear Algebra Appl. 429 (2008) 2724-2731
-
(2008)
Linear Algebra Appl.
, vol.429
, pp. 2724-2731
-
-
Omidi, G.R.1
-
9
-
-
65749108675
-
-
D. Stevanović, V. Brankov, D. Cvetković, S. Simić, newGRAPH, the expert system. http://www.mi.sanu.ac.rs/newgraph
-
D. Stevanović, V. Brankov, D. Cvetković, S. Simić, newGRAPH, the expert system. http://www.mi.sanu.ac.rs/newgraph
-
-
-
-
10
-
-
0004167131
-
-
Johann Ambrosius Barth Verlag, Heidelberg, Leipzig
-
Cvetković D.M., Doob M., and Sachs H. Spectra of Graphs - Theory and Application. 3rd ed. (1995), Johann Ambrosius Barth Verlag, Heidelberg, Leipzig
-
(1995)
Spectra of Graphs - Theory and Application. 3rd ed.
-
-
Cvetković, D.M.1
Doob, M.2
Sachs, H.3
-
11
-
-
0003829617
-
-
Springer, New York, Berlin, Heidelberg
-
Godsil C., and Royle G. Algebraic Graph Theory (2001), Springer, New York, Berlin, Heidelberg
-
(2001)
Algebraic Graph Theory
-
-
Godsil, C.1
Royle, G.2
-
13
-
-
51849112953
-
Eigenvalue bounds for the signless Laplacian
-
Cvetković D., Rowlinson P., and Simić S. Eigenvalue bounds for the signless Laplacian. Publ. Inst. Math. 81 95 (2007) 11-27
-
(2007)
Publ. Inst. Math.
, vol.81
, Issue.95
, pp. 11-27
-
-
Cvetković, D.1
Rowlinson, P.2
Simić, S.3
-
14
-
-
2442640405
-
On the spectral radii of topological equivalent graphs
-
Fielder M. (Ed), Academia Praha, Prague
-
Hoffman A.J., and Smith J.H. On the spectral radii of topological equivalent graphs. In: Fielder M. (Ed). Recent Advances in Graph Theory (1975), Academia Praha, Prague 273-291
-
(1975)
Recent Advances in Graph Theory
, pp. 273-291
-
-
Hoffman, A.J.1
Smith, J.H.2
-
15
-
-
0039155261
-
Some properties of spectrum of graphs
-
Guy R., Hanani H., Sauer N., and Schönheim J. (Eds), Gordon and Breach, Science Publ., Inc., New York, London, Paris
-
Smith J.H. Some properties of spectrum of graphs. In: Guy R., Hanani H., Sauer N., and Schönheim J. (Eds). Combinatorial Structures and Their Applications (1970), Gordon and Breach, Science Publ., Inc., New York, London, Paris 403-406
-
(1970)
Combinatorial Structures and Their Applications
, pp. 403-406
-
-
Smith, J.H.1
-
16
-
-
0038836609
-
On limite points of spectral radii of non-negative symmetrical integral matrices
-
Springer, Berlin
-
Hoffman A.J. On limite points of spectral radii of non-negative symmetrical integral matrices. Lecture Notes in Math. vol. 303 (1972), Springer, Berlin 165-172
-
(1972)
Lecture Notes in Math.
, vol.303
, pp. 165-172
-
-
Hoffman, A.J.1
|