메뉴 건너뛰기




Volumn 9, Issue 1, 2009, Pages 3-25

Modelling zero-inflated spatio-temporal processes

Author keywords

Bayesian paradigm; Conditional autoregressive processes; Gaussian processes; Mixture models; Model comparison

Indexed keywords


EID: 65649132287     PISSN: 1471082X     EISSN: 14770342     Source Type: Journal    
DOI: 10.1177/1471082X0800900102     Document Type: Article
Times cited : (35)

References (21)
  • 4
    • 33748427185 scopus 로고    scopus 로고
    • Structured additive regression for overdispersed and zero-inflated count data
    • DOI 10.1002/asmb.631
    • Fahrmeir L and Echavarria LO (2006) Structured additive regression for overdispersed and zero-inflated count data. Applied Stochastic Models in Business and Industry, 22, 351 - 69 (Pubitemid 44342591)
    • (2006) Applied Stochastic Models in Business and Industry , vol.22 , Issue.4 , pp. 351-369
    • Fahrmeir, L.1    Echavarria, L.O.2
  • 5
    • 65649152080 scopus 로고    scopus 로고
    • Spatial modelling of the relative risk of dengue fever in Rio de Janeiro for the epidemic period between 2001 and 2002
    • Ferreira GS and Schmidt AM (2006) Spatial modelling of the relative risk of dengue fever in Rio de Janeiro for the epidemic period between 2001 and 2002. Brazilian Journal of Probability and Statistics, 20, 47 - 63
    • (2006) Brazilian Journal of Probability and Statistics , vol.20 , pp. 47-63
    • Ferreira, G.S.1    Schmidt, A.M.2
  • 6
    • 0001053807 scopus 로고    scopus 로고
    • Gamerman D (1998) Markov chain Monte Carlo for dynamic generalized linear models. Biometrika, 85, 215 - 27
    • (1998) Biometrika , vol.85 , pp. 215-27
    • Gamerman, D.1    Gamerman, D.2
  • 8
    • 0002799511 scopus 로고    scopus 로고
    • Model choice: A minimum posterior predictive loss approach
    • Gelfand AE and Ghosh SK (1998) Model choice: a minimum posterior predictive loss approach. Biometrika, 85, 1 - 11
    • (1998) Biometrika , vol.85 , pp. 1-11
    • Gelfand, A.E.1    Ghosh, S.K.2
  • 9
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for gibbs sampling
    • Gilks WR and Wild P (1992) Adaptive rejection sampling for gibbs sampling. Applied Statistics, 41, 337 - 48
    • (1992) Applied Statistics , vol.41 , pp. 337-48
    • Gilks, W.R.1    Wild, P.2
  • 10
    • 2942619617 scopus 로고    scopus 로고
    • Space and space-time modeling using process convolutions
    • C Anderson, V Barnett, PC Chatwin and AH El-Shaarawi ), London: Springer-Verlag.
    • Higdon D (2002) Space and space-time modeling using process convolutions. In Quantitative methods for current environmental issues (eds C Anderson, V Barnett, PC Chatwin and AH El-Shaarawi). 37 - 56. London: Springer-Verlag.
    • (2002) Quantitative Methods for Current Environmental Issues , pp. 37-56
    • Higdon, D.1
  • 11
    • 0026821975 scopus 로고
    • Zero-inflated Poisson regression, with an application to defects in manufacturing
    • Lambert D (1992) Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34, 1 - 14
    • (1992) Technometrics , vol.34 , pp. 1-14
    • Lambert, D.1
  • 13
    • 18544379364 scopus 로고    scopus 로고
    • Spatio-temporal models for mapping the incidence of malaria in Pará
    • Nobre AA, Schmidt AM and Lopes HF (2005) Spatio-temporal models for mapping the incidence of malaria in Pará. Environmetrics, 16, 291 - 304
    • (2005) Environmetrics , vol.16 , pp. 291-304
    • Nobre, A.A.1    Schmidt, A.M.2    Lopes, H.F.3
  • 14
    • 65649094535 scopus 로고    scopus 로고
    • An efficient sampling scheme for dynamic generalized models
    • Departamento de Métodos Estatï¿1/2sticos, IM-UFRJ, Brazil
    • Ravines RR, Migon HS and Schmidt AM (2007) An efficient sampling scheme for dynamic generalized models. Technical Report No. 201/2007. Departamento de Métodos Estatï¿1/2sticos, IM-UFRJ, Brazil
    • (2007) Technical Report No. 201/2007
    • Ravines, R.R.1    Migon, H.S.2    Schmidt, A.M.3
  • 16
    • 47949125689 scopus 로고    scopus 로고
    • Bayesian spatio-temporal models based on discrete convolutions
    • 258
    • SansóB, Schmidt AM and Nobre AA (2008) Bayesian spatio-temporal models based on discrete convolutions. Canadian Journal of Statistics, 36, 239 - 258
    • (2008) Canadian Journal of Statistics , vol.36
    • Sansób1    Schmidt, A.M.2    Nobre, A.A.3
  • 17
    • 4544229280 scopus 로고    scopus 로고
    • Space-time modeling of rainfall data
    • DOI 10.1002/env.650
    • Velarde LGC, Migon HS and Pereira BB (2004) Space-time modeling of rainfall data. Environmetrics, 15, 561 - 76 (Pubitemid 39211066)
    • (2004) Environmetrics , vol.15 , Issue.6 , pp. 561-576
    • Velarde, L.G.C.1    Migon, H.S.2    Pereira, B.D.B.3
  • 20
    • 0000414912 scopus 로고    scopus 로고
    • A dimension-reduction approach to space-time Kalman filtering
    • Wikle C and Cressie NAC (1999) A dimension-reduction approach to space-time Kalman filtering. Biometrika, 86, 815 - 29
    • (1999) Biometrika , vol.86 , pp. 815-29
    • Wikle, C.1    Cressie, N.A.C.2
  • 21
    • 1642304814 scopus 로고    scopus 로고
    • Climatological analysis of tornado report counts using a hierarchical Bayesian spatiotemporal model
    • STS 12-15
    • Wikle CK and Anderson CJ (2003) Climatological analysis of tornado report counts using a hierarchical Bayesian spatio-temporal model. Journal of Geophysics Research-Atmospheres, 108, 9005 (Pubitemid 38371073)
    • (2003) Journal of Geophysical Research D: Atmospheres , vol.108 , Issue.24 , pp. 12-1
    • Wikle, C.K.1    Anderson, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.