-
1
-
-
0000189651
-
-
10.1063/1.464913
-
A. D. Becke, J. Chem. Phys. 98, 5648 (1993). 10.1063/1.464913
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 5648
-
-
Becke, A.D.1
-
4
-
-
24544432103
-
-
10.1103/PhysRev.97.1474
-
P.-O. Löwdin, Phys. Rev. 10.1103/PhysRev.97.1474 97, 1474 (1955).
-
(1955)
Phys. Rev.
, vol.97
, pp. 1474
-
-
Löwdin, P.-O.1
-
5
-
-
0000630643
-
-
10.1103/PhysRevB.12.2111
-
T. L. Gilbert, Phys. Rev. B 10.1103/PhysRevB.12.2111 12, 2111 (1975).
-
(1975)
Phys. Rev. B
, vol.12
, pp. 2111
-
-
Gilbert, T.L.1
-
6
-
-
11044228716
-
-
10.1063/1.1819319
-
C. Kollmar, J. Chem. Phys. 121, 11581 (2004). 10.1063/1.1819319
-
(2004)
J. Chem. Phys.
, vol.121
, pp. 11581
-
-
Kollmar, C.1
-
9
-
-
20044384429
-
-
10.1103/PhysRevB.71.113103
-
J. Cioslowski and K. Pernal, Phys. Rev. B 71, 113103 (2005). 10.1103/PhysRevB.71.113103
-
(2005)
Phys. Rev. B
, vol.71
, pp. 113103
-
-
Cioslowski, J.1
Pernal, K.2
-
10
-
-
0037965419
-
-
10.1103/PhysRevB.61.7348
-
G. Csányi and T. A. Arias, Phys. Rev. B 61, 7348 (2000). 10.1103/PhysRevB.61.7348
-
(2000)
Phys. Rev. B
, vol.61
, pp. 7348
-
-
Csányi, G.1
Arias, T.A.2
-
14
-
-
33645056677
-
-
10.1002/qua.20858
-
M. Piris, Int. J. Quantum Chem. 106, 1093 (2006). 10.1002/qua.20858
-
(2006)
Int. J. Quantum Chem.
, vol.106
, pp. 1093
-
-
Piris, M.1
-
18
-
-
28844442388
-
-
10.1063/1.2135289
-
P. Leiva and M. Piris, J. Chem. Phys. 123, 214102 (2005). 10.1063/1.2135289
-
(2005)
J. Chem. Phys.
, vol.123
, pp. 214102
-
-
Leiva, P.1
Piris, M.2
-
20
-
-
57249111944
-
-
10.1103/PhysRevB.78.201103
-
S. Sharma, J. K. Dewhurst, N. N. Lathiotakis, and E. K. U. Gross, Phys. Rev. B 78, 201103 (R) (2008). 10.1103/PhysRevB.78.201103
-
(2008)
Phys. Rev. B
, vol.78
, pp. 201103
-
-
Sharma, S.1
Dewhurst, J.K.2
Lathiotakis, N.N.3
Gross, E.K.U.4
-
21
-
-
33744664168
-
-
10.1103/PhysRevB.56.9970
-
G. Ortiz and P. Ballone, Phys. Rev. B 56, 9970 (1997). 10.1103/PhysRevB.56.9970
-
(1997)
Phys. Rev. B
, vol.56
, pp. 9970
-
-
Ortiz, G.1
Ballone, P.2
-
22
-
-
65649141127
-
-
In Ref. the correlation energy of the three-dimensional uniform electron gas is calculated using variational Monte Carlo and fixed-node diffusion Monte Carlo methods. The accuracy of the extrapolated correlation energy is estimated to be 4 mhartree.
-
In Ref. the correlation energy of the three-dimensional uniform electron gas is calculated using variational Monte Carlo and fixed-node diffusion Monte Carlo methods. The accuracy of the extrapolated correlation energy is estimated to be 4 mhartree.
-
-
-
-
24
-
-
0000109748
-
-
10.1063/1.473182
-
L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 106, 1063 (1997). 10.1063/1.473182
-
(1997)
J. Chem. Phys.
, vol.106
, pp. 1063
-
-
Curtiss, L.A.1
Raghavachari, K.2
Redfern, P.C.3
Pople, J.A.4
-
25
-
-
22244474611
-
-
10.1063/1.476538
-
L. A. Curtiss, P. C. Redfern, K. Raghavachari, and J. A. Pople, J. Chem. Phys. 109, 42 (1998). 10.1063/1.476538
-
(1998)
J. Chem. Phys.
, vol.109
, pp. 42
-
-
Curtiss, L.A.1
Redfern, P.C.2
Raghavachari, K.3
Pople, J.A.4
-
26
-
-
39249084230
-
-
10.1103/PhysRevLett.87.133004
-
E. J. Baerends, Phys. Rev. Lett. 87, 133004 (2001). 10.1103/PhysRevLett. 87.133004
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 133004
-
-
Baerends, E.J.1
|