메뉴 건너뛰기




Volumn 79, Issue 4, 2009, Pages

Optimal navigation in complex networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; CRITICAL POINTS; RANDOM NAVIGATIONS; RANDOM WALKERS;

EID: 65549136527     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.79.046103     Document Type: Article
Times cited : (20)

References (28)
  • 1
    • 2342616749 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.92.118701
    • J. D. Noh and H. Rieger, Phys. Rev. Lett. 92, 118701 (2004). 10.1103/PhysRevLett.92.118701
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 118701
    • Noh, J.D.1    Rieger, H.2
  • 2
    • 41349093710 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.71.016107
    • S. J. Yang, Phys. Rev. E 71, 016107 (2005). 10.1103/PhysRevE.71.016107
    • (2005) Phys. Rev. e , vol.71 , pp. 016107
    • Yang, S.J.1
  • 3
    • 33846353202 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.75.016102
    • L. F. Costa and G. Travieso, Phys. Rev. E 75, 016102 (2007). 10.1103/PhysRevE.75.016102
    • (2007) Phys. Rev. e , vol.75 , pp. 016102
    • Costa, L.F.1    Travieso, G.2
  • 10
    • 28844453294 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.72.047104
    • D. O. Cajueiro, Phys. Rev. E 72, 047104 (2005). 10.1103/PhysRevE.72. 047104
    • (2005) Phys. Rev. e , vol.72 , pp. 047104
    • Cajueiro, D.O.1
  • 11
    • 34547257207 scopus 로고    scopus 로고
    • 10.1063/1.2751266
    • A. E. Motter and Z. Toroczkai, Chaos 17, 026101 (2007). 10.1063/1.2751266
    • (2007) Chaos , vol.17 , pp. 026101
    • Motter, A.E.1    Toroczkai, Z.2
  • 12
    • 48349096788 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.78.016110
    • R. Carvalho and G. Iori, Phys. Rev. E 78, 016110 (2008). 10.1103/PhysRevE.78.016110
    • (2008) Phys. Rev. e , vol.78 , pp. 016110
    • Carvalho, R.1    Iori, G.2
  • 13
    • 41549117153 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.77.035101
    • D. O. Cajueiro and W. L. Maldonado, Phys. Rev. E 77, 035101 (R) (2008). 10.1103/PhysRevE.77.035101
    • (2008) Phys. Rev. e , vol.77 , pp. 035101
    • Cajueiro, D.O.1    Maldonado, W.L.2
  • 15
    • 65549169283 scopus 로고    scopus 로고
    • Here, we are not assuming such as in that P (i,t) is the shortest path from node i to node t.
    • Here, we are not assuming such as in that P (i,t) is the shortest path from node i to node t.
  • 17
    • 0003787146 scopus 로고
    • Princeton University Press, New Jersey
    • R. Bellman, Dynamic Programming (Princeton University Press, New Jersey, 1957).
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 19
    • 0038483826 scopus 로고    scopus 로고
    • 10.1126/science.286.5439.509
    • A. L. Barabasi and R. Albert, Science 286, 509 (1999). 10.1126/science.286.5439.509
    • (1999) Science , vol.286 , pp. 509
    • Barabasi, A.L.1    Albert, R.2
  • 20
    • 0037012880 scopus 로고    scopus 로고
    • 10.1126/science.1065103
    • S. Maslov and K. Sneppen, Science 296, 910 (2002). 10.1126/science. 1065103
    • (2002) Science , vol.296 , pp. 910
    • Maslov, S.1    Sneppen, K.2
  • 23
    • 0036940215 scopus 로고    scopus 로고
    • 10.1016/S0378-4371(02)01089-0
    • V. Latora and M. Marchiori, Physica A 314, 109 (2002). 10.1016/S0378-4371(02)01089-0
    • (2002) Physica A , vol.314 , pp. 109
    • Latora, V.1    Marchiori, M.2
  • 24
    • 65549127422 scopus 로고    scopus 로고
    • It is worth noting that the subgraphs used to explore navigation in the Swedish cities were built using the following procedure. Start with an empty subgraph. Add to this subgraph a randomly selected node of the network (we will call this node "1"). Then add one of the neighbors of node 1 (we will call this neighbor node "2") to the subgraph. If the desired number of nodes of the subgraph is not reached, add another neighbor of node 1 and so on. If the desired number of nodes of the subgraph is not reached, after all the neighbors of node 1 are included in the subgraph, repeat the procedure to node 2 and so on. After choosing the desired number of nodes, connect these nodes with the original edges.
    • It is worth noting that the subgraphs used to explore navigation in the Swedish cities were built using the following procedure. Start with an empty subgraph. Add to this subgraph a randomly selected node of the network (we will call this node "1"). Then add one of the neighbors of node 1 (we will call this neighbor node "2") to the subgraph. If the desired number of nodes of the subgraph is not reached, add another neighbor of node 1 and so on. If the desired number of nodes of the subgraph is not reached, after all the neighbors of node 1 are included in the subgraph, repeat the procedure to node 2 and so on. After choosing the desired number of nodes, connect these nodes with the original edges.
  • 25
    • 65549092423 scopus 로고    scopus 로고
    • V. Batagelj and A. Mrvar, PAJEK datasets, 2006 (http://vlado.fmf.uni-lj. si/pub/networks/data/).
    • (2006)
    • Batagelj, V.1    Mrvar, A.2
  • 28
    • 65549157206 scopus 로고    scopus 로고
    • The only modification in the framework needed to deal with weighted networks is to replace the cost CN in Eq. 2 by the size of the edge.
    • The only modification in the framework needed to deal with weighted networks is to replace the cost CN in Eq. 2 by the size of the edge.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.