메뉴 건너뛰기




Volumn 21, Issue 4, 2009, Pages 1145-1172

Bayesian k-means as a " maximization-expectation" algorithm

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; BAYES THEOREM; BIOLOGICAL MODEL;

EID: 65549098786     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2008.12-06-421     Document Type: Letter
Times cited : (37)

References (17)
  • 1
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.). Cambridge, MA:MIT Press
    • Attias, H. (2000). A variational Bayesian framework for graphical models. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems, 12. Cambridge, MA:MIT Press.
    • (2000) Advances in neural information processing systems 12
    • Attias, H.1
  • 3
    • 1942485278 scopus 로고    scopus 로고
    • Using the triangle inequality to accelerate k-means
    • Menlo Park, CA: AAAI Press
    • Elkan, C. (2003). Using the triangle inequality to accelerate k-means. In Proc. 20 International Conf. on Machine Learning (pp. 147-153). Menlo Park, CA: AAAI Press.
    • (2003) Proc. 20 International Conf. on Machine Learning , pp. 147-153
    • Elkan, C.1
  • 4
    • 0032284326 scopus 로고    scopus 로고
    • Fast hierarchical clustering and other applications of dynamic closest pairs
    • Available online at
    • Eppstein, D. (1998). Fast hierarchical clustering and other applications of dynamic closest pairs. In SODA: ACM-SIAM Symposium on Discrete Algorithms. Available online at citeseer.ist.psu.edu/eppstein98fast.html.
    • (1998) SODA: ACM-SIAM Symposium on Discrete Algorithms
    • Eppstein, D.1
  • 5
    • 84898934543 scopus 로고    scopus 로고
    • Variational inference for Bayesian mixtures of factor analysers
    • S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.). Cambridge, MA: MIT Press
    • Ghahramani, Z., & Beal, M. J. (2000). Variational inference for Bayesian mixtures of factor analysers. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems, 12. Cambridge, MA: MIT Press.
    • (2000) Advances in neural information processing systems 12
    • Ghahramani, Z.1    Beal, M.J.2
  • 6
    • 84864043341 scopus 로고    scopus 로고
    • Infinite latent feature models and the Indian buffet process
    • Y. Weiss, B. Schölkopf, & J. Platt (Eds.). Cambridge, MA: MIT Press
    • Griffiths, T., & Ghahramani, Z. (2006). Infinite latent feature models and the Indian buffet process. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 475-482). Cambridge, MA: MIT Press.
    • (2006) Advances in neural information processing systems , vol.18 , pp. 475-482
    • Griffiths, T.1    Ghahramani, Z.2
  • 7
    • 9144231916 scopus 로고    scopus 로고
    • Learning the k in k-means
    • L. Saul, Y. Weiss, & L. Bottou (Eds.). Cambridge, MA: MIT Press
    • Hamerly, G., & Elkan, C. (2003). Learning the k in k-means. In L. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17. Cambridge, MA: MIT Press.
    • (2003) Advances in neural information processing systems , vol.17
    • Hamerly, G.1    Elkan, C.2
  • 8
    • 0027803368 scopus 로고
    • Keeping neural networks simple by minimizing the description length of the weights
    • New York: ACM Press
    • Hinton, U., & van Camp, G. (1993). Keeping neural networks simple by minimizing the description length of the weights. In Proc. 6th Annual Workshop on Comput. Learning Theory (pp. 5-13). New York: ACM Press.
    • (1993) Proc. 6th Annual Workshop on Comput. Learning Theory , pp. 5-13
    • Hinton, U.1    van Camp, G.2
  • 10
    • 84899029127 scopus 로고    scopus 로고
    • Very fast EM-based mixture model clustering using multiresolution kd-trees
    • M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.). Cambridge, MA: MIT Press
    • Moore, A. (1998). Very fast EM-based mixture model clustering using multiresolution kd-trees. In M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Advances in neural information processing systems, 10. Cambridge, MA: MIT Press.
    • (1998) Advances in neural information processing systems 10
    • Moore, A.1
  • 11
    • 1942419246 scopus 로고    scopus 로고
    • The anchors hierarchy: Using the triangle inequality to survive high-dimensional data
    • Menlo Park, CA: AAAI Press
    • Moore, A. (2000). The anchors hierarchy: Using the triangle inequality to survive high-dimensional data. In Proc. of the 12th Conf. on Uncertainty in Artificial Intelligence (pp. 397-405). Menlo Park, CA: AAAI Press.
    • (2000) Proc. of the 12th Conf. on Uncertainty in Artificial Intelligence , pp. 397-405
    • Moore, A.1
  • 13
    • 0001820920 scopus 로고    scopus 로고
    • X-means: Extending K-means with efficient estimation of the number of clusters
    • San Francisco: Morgan Kaufmann
    • Pelleg, D., & Moore, A. (2000). X-means: Extending K-means with efficient estimation of the number of clusters. In Proceedings of the 17th International Conference on Machine Learning (pp. 727-734). San Francisco: Morgan Kaufmann.
    • (2000) Proceedings of the 17th International Conference on Machine Learning , pp. 727-734
    • Pelleg, D.1    Moore, A.2
  • 14
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • 623-656
    • Shannon, C. E. (1948). A mathematical theory of communication. Bell Sys. Tech. Journal, 27, 379-423, 623-656.
    • (1948) Bell Sys. Tech. Journal , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 17
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for very large databases
    • New York: ACM Press
    • Zhang, T., Ramakrishnan, R., & Livny, M. (1996). Birch: An efficient data clustering method for very large databases. In ACM-SIGMOD Int. Conf. Management of Data (pp. 103-114). New York: ACM Press.
    • (1996) ACM-SIGMOD Int. Conf. Management of Data , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.