-
1
-
-
84898964031
-
A variational Bayesian framework for graphical models
-
S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.). Cambridge, MA:MIT Press
-
Attias, H. (2000). A variational Bayesian framework for graphical models. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems, 12. Cambridge, MA:MIT Press.
-
(2000)
Advances in neural information processing systems 12
-
-
Attias, H.1
-
3
-
-
1942485278
-
Using the triangle inequality to accelerate k-means
-
Menlo Park, CA: AAAI Press
-
Elkan, C. (2003). Using the triangle inequality to accelerate k-means. In Proc. 20 International Conf. on Machine Learning (pp. 147-153). Menlo Park, CA: AAAI Press.
-
(2003)
Proc. 20 International Conf. on Machine Learning
, pp. 147-153
-
-
Elkan, C.1
-
4
-
-
0032284326
-
Fast hierarchical clustering and other applications of dynamic closest pairs
-
Available online at
-
Eppstein, D. (1998). Fast hierarchical clustering and other applications of dynamic closest pairs. In SODA: ACM-SIAM Symposium on Discrete Algorithms. Available online at citeseer.ist.psu.edu/eppstein98fast.html.
-
(1998)
SODA: ACM-SIAM Symposium on Discrete Algorithms
-
-
Eppstein, D.1
-
5
-
-
84898934543
-
Variational inference for Bayesian mixtures of factor analysers
-
S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.). Cambridge, MA: MIT Press
-
Ghahramani, Z., & Beal, M. J. (2000). Variational inference for Bayesian mixtures of factor analysers. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems, 12. Cambridge, MA: MIT Press.
-
(2000)
Advances in neural information processing systems 12
-
-
Ghahramani, Z.1
Beal, M.J.2
-
6
-
-
84864043341
-
Infinite latent feature models and the Indian buffet process
-
Y. Weiss, B. Schölkopf, & J. Platt (Eds.). Cambridge, MA: MIT Press
-
Griffiths, T., & Ghahramani, Z. (2006). Infinite latent feature models and the Indian buffet process. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 475-482). Cambridge, MA: MIT Press.
-
(2006)
Advances in neural information processing systems
, vol.18
, pp. 475-482
-
-
Griffiths, T.1
Ghahramani, Z.2
-
7
-
-
9144231916
-
Learning the k in k-means
-
L. Saul, Y. Weiss, & L. Bottou (Eds.). Cambridge, MA: MIT Press
-
Hamerly, G., & Elkan, C. (2003). Learning the k in k-means. In L. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17. Cambridge, MA: MIT Press.
-
(2003)
Advances in neural information processing systems
, vol.17
-
-
Hamerly, G.1
Elkan, C.2
-
8
-
-
0027803368
-
Keeping neural networks simple by minimizing the description length of the weights
-
New York: ACM Press
-
Hinton, U., & van Camp, G. (1993). Keeping neural networks simple by minimizing the description length of the weights. In Proc. 6th Annual Workshop on Comput. Learning Theory (pp. 5-13). New York: ACM Press.
-
(1993)
Proc. 6th Annual Workshop on Comput. Learning Theory
, pp. 5-13
-
-
Hinton, U.1
van Camp, G.2
-
10
-
-
84899029127
-
Very fast EM-based mixture model clustering using multiresolution kd-trees
-
M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.). Cambridge, MA: MIT Press
-
Moore, A. (1998). Very fast EM-based mixture model clustering using multiresolution kd-trees. In M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Advances in neural information processing systems, 10. Cambridge, MA: MIT Press.
-
(1998)
Advances in neural information processing systems 10
-
-
Moore, A.1
-
11
-
-
1942419246
-
The anchors hierarchy: Using the triangle inequality to survive high-dimensional data
-
Menlo Park, CA: AAAI Press
-
Moore, A. (2000). The anchors hierarchy: Using the triangle inequality to survive high-dimensional data. In Proc. of the 12th Conf. on Uncertainty in Artificial Intelligence (pp. 397-405). Menlo Park, CA: AAAI Press.
-
(2000)
Proc. of the 12th Conf. on Uncertainty in Artificial Intelligence
, pp. 397-405
-
-
Moore, A.1
-
13
-
-
0001820920
-
X-means: Extending K-means with efficient estimation of the number of clusters
-
San Francisco: Morgan Kaufmann
-
Pelleg, D., & Moore, A. (2000). X-means: Extending K-means with efficient estimation of the number of clusters. In Proceedings of the 17th International Conference on Machine Learning (pp. 727-734). San Francisco: Morgan Kaufmann.
-
(2000)
Proceedings of the 17th International Conference on Machine Learning
, pp. 727-734
-
-
Pelleg, D.1
Moore, A.2
-
14
-
-
84856043672
-
A mathematical theory of communication
-
623-656
-
Shannon, C. E. (1948). A mathematical theory of communication. Bell Sys. Tech. Journal, 27, 379-423, 623-656.
-
(1948)
Bell Sys. Tech. Journal
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
15
-
-
0034264299
-
SMEM algorithm for mixture models
-
Ueda, N., Nakano, R., Ghahramani, Z., & Hinton, G. E. (2000). SMEM algorithm for mixture models. Neural Computation, 12(9), 2109-2128.
-
(2000)
Neural Computation
, vol.12
, Issue.9
, pp. 2109-2128
-
-
Ueda, N.1
Nakano, R.2
Ghahramani, Z.3
Hinton, G.E.4
-
17
-
-
0030157145
-
Birch: An efficient data clustering method for very large databases
-
New York: ACM Press
-
Zhang, T., Ramakrishnan, R., & Livny, M. (1996). Birch: An efficient data clustering method for very large databases. In ACM-SIGMOD Int. Conf. Management of Data (pp. 103-114). New York: ACM Press.
-
(1996)
ACM-SIGMOD Int. Conf. Management of Data
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
|