메뉴 건너뛰기




Volumn 19, Issue 1, 2009, Pages 133-144

Using growing degree days, agrometeorological variables, linear regression, and data mining methods to help improve prediction of sweetpotato harvest date in louisiana

Author keywords

Heat units; Ipomoea batatas; Phenology

Indexed keywords

IPOMOEA BATATAS;

EID: 65449174033     PISSN: 10630198     EISSN: None     Source Type: Journal    
DOI: 10.21273/hortsci.19.1.133     Document Type: Article
Times cited : (43)

References (48)
  • 1
    • 0001054870 scopus 로고
    • The determination and significance of the base temperature in a linear heat unit system
    • Arnold, C.Y. 1959. The determination and significance of the base temperature in a linear heat unit system. Proc. Amer. Soc. Hort. Sci. 74:430-445.
    • (1959) Proc. Amer. Soc. Hort. Sci. , vol.74 , pp. 430-445
    • Arnold, C.Y.1
  • 2
    • 0001432965 scopus 로고
    • Maximum-minimum temperatures as a basic for computing heat units
    • Arnold, C.Y. 1960. Maximum-minimum temperatures as a basic for computing heat units. Proc. Amer. Soc. Hort. Sci. 76: 683-692.
    • (1960) Proc. Amer. Soc. Hort. Sci. , vol.76 , pp. 683-692
    • Arnold, C.Y.1
  • 3
    • 34250809898 scopus 로고    scopus 로고
    • Statistical methods for data mining
    • In: O. Maimon and L. Rokach (eds.), Springer, New York.
    • Benjamini, Y. and M. Leshno. 2005. Statistical methods for data mining, p. 565-588. In: O. Maimon and L. Rokach (eds.). Data mining and knowledge discovery handbook. Springer, New York.
    • (2005) Data Mining and Knowledge Discovery Handbook , pp. 565-588
    • Benjamini, Y.1    Leshno, M.2
  • 4
    • 30344465351 scopus 로고    scopus 로고
    • Knowledge discovery from models of soil properties developed through data mining
    • Bui, E.N., B.L. Henderson, and K. Viergever. 2006. Knowledge discovery from models of soil properties developed through data mining. Ecol. Modell. 191:431-446.
    • (2006) Ecol. Modell , vol.191 , pp. 431-446
    • Bui, E.N.1    Henderson, B.L.2    Viergever, K.3
  • 5
    • 3342958330 scopus 로고    scopus 로고
    • Modeling vegetative development of berseem clover (Trifolium alexandrinumL.) as a function of growing degree days using linear regression and neural networks
    • Clapham, W.M. and J.M. Fedders. 2004. Modeling vegetative development of berseem clover (Trifolium alexandrinumL.) as a function of growing degree days using linear regression and neural networks. Can. J. Plant Sci. 84:511-517.
    • (2004) Can. J. Plant Sci. , vol.84 , pp. 511-517
    • Clapham, W.M.1    Fedders, J.M.2
  • 6
    • 84869570341 scopus 로고    scopus 로고
    • 1 Mar.2008
    • Data Mining Group. 2008. Data Mining Group. 1 Mar. 2008. http://www.dmg.org/.
    • (2008) Data Mining Group
  • 7
    • 0030939917 scopus 로고    scopus 로고
    • Determining heat unit requirements for broccoli harvest in coastal South Carolina
    • Dufault, R.J. 1997. Determining heat unit requirements for broccoli harvest in coastal South Carolina. J. Amer. Soc. Hort. Sci. 122:169-174.
    • (1997) J. Amer. Soc. Hort. Sci. , vol.122 , pp. 169-174
    • Dufault, R.J.1
  • 9
    • 29144519512 scopus 로고    scopus 로고
    • A data mining approach to simulating farmers' crop choices for integrated water resources management
    • Ekasingh, B., K. Ngamsomsuke, R.A. Letcher, and J. Spate. 2005. A data mining approach to simulating farmers' crop choices for integrated water resources management. J. Environ. Mgt. 77:315-325.
    • (2005) J. Environ. Mgt. , vol.77 , pp. 315-325
    • Ekasingh, B.1    Ngamsomsuke, K.2    Letcher, R.A.3    Spate, J.4
  • 10
    • 0033030902 scopus 로고    scopus 로고
    • Harvest date prediction for field vegetables
    • Everaarts, A.P. 1999. Harvest date prediction for field vegetables. A review. Gartenbauwissenschaft. 64:20-25.
    • (1999) A Review. Gartenbauwissenschaft , vol.64 , pp. 20-25
    • Everaarts, A.P.1
  • 11
    • 85173885383 scopus 로고    scopus 로고
    • KDD for science data analysis: Issues and examples
    • In: E. Simoudis, J. Han, and U. Fayyad (eds.). p. 50-56 Proc, 2-7 Aug. 1996, Menlo Park, CA
    • Fayyad, U., D. Haussler, and P. Stoloroz. 1996. KDD for science data analysis: Issues and examples, p.50-56. In: E. Simoudis, J. Han, and U. Fayyad (eds.). p. 50-56 Proc. Second Knowledge Discovery and Data Mining Conf. 2-7 Aug. 1996 Menlo Park, CA.
    • (1996) Second Knowledge Discovery and Data Mining Conf , pp. 50-56
    • Fayyad, U.1    Haussler, D.2    Stoloroz, P.3
  • 14
    • 0033906655 scopus 로고    scopus 로고
    • Predicting aflatoxin contamination in peanuts: A genetic algorithm/neural network approach
    • Henderson, C.E., W.D. Potter, R.W. McClendon, and G. Hogenboom. 2000. Predicting aflatoxin contamination in peanuts: A genetic algorithm/neural network approach. Appl. Intell. 12:183-192.
    • (2000) Appl. Intell. , vol.12 , pp. 183-192
    • Henderson, C.E.1    Potter, W.D.2    McClendon, R.W.3    Hogenboom, G.4
  • 15
    • 0001237737 scopus 로고
    • DEGDAY: A program for calculating degree-days, and assumptions behind the degree-day approach
    • Higley, L.G., L.P. Pedigo, and K.R. Ostlie. 1986. DEGDAY: A program for calculating degree-days, and assumptions behind the degree-day approach. Environ. Entomol. 15:999-1016.
    • (1986) Environ. Entomol. , vol.15 , pp. 999-1016
    • Higley, L.G.1    Pedigo, L.P.2    Ostlie, K.R.3
  • 16
    • 0001668363 scopus 로고    scopus 로고
    • A heat unit model to predict growth and development of muskmelon to anthesis of perfect flowers
    • Jenni, S., D. Cloutier, G. Bourgeois, and K.A. Stewart. 1996. A heat unit model to predict growth and development of muskmelon to anthesis of perfect flowers. J. Amer. Soc. Hort. Sci. 2:274-280.
    • (1996) J. Amer. Soc. Hort. Sci. , vol.2 , pp. 274-280
    • Jenni, S.1    Cloutier, D.2    Bourgeois, G.3    Stewart, K.A.4
  • 17
    • 0031915955 scopus 로고    scopus 로고
    • Predicting yield and time to maturity of muskmelons from weather and crop observations
    • Jenni, S., K.A. Stewart, G. Bourgeois, and D. Cloutier. 1998. Predicting yield and time to maturity of muskmelons from weather and crop observations. J. Amer. Soc. Hort. Sci. 123:195-201.
    • (1998) J. Amer. Soc. Hort. Sci. , vol.123 , pp. 195-201
    • Jenni, S.1    Stewart, K.A.2    Bourgeois, G.3    Cloutier, D.4
  • 18
    • 85020129242 scopus 로고
    • The physiology of yield in the sweet potato
    • In: J. Bouwkamp (ed.), pages. CRC Press, Boca Raton, FL
    • Kays, S.J. 1985. The physiology of yield in the sweet potato, p. 79-132. In: J. Bouwkamp (ed.). Sweetpotato products: A natural resource for the tropics, pages. CRC Press, Boca Raton, FL.
    • (1985) Sweetpotato Products: A Natural Resource for the Tropics , pp. 79-132
    • Kays, S.J.1
  • 19
    • 0035283223 scopus 로고    scopus 로고
    • Controlling overfitting in classificationtree models of software quality
    • Khoshgoftaar, T. and E.B. Allen. 2001. Controlling overfitting in classificationtree models of software quality. Empir. Softw. Eng. 6:59-79.
    • (2001) Empir. Softw. Eng. , vol.6 , pp. 59-79
    • Khoshgoftaar, T.1    Allen, E.B.2
  • 20
    • 36248996507 scopus 로고    scopus 로고
    • Comparison of the decision tree, artificial neural network, and linear regression methods based on the number and types of independent variables and sample size
    • Kim, Y.S. 2008. Comparison of the decision tree, artificial neural network, and linear regression methods based on the number and types of independent variables and sample size. Expert Syst. Appl. 34:1227-1234.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 1227-1234
    • Kim, Y.S.1
  • 21
    • 34548269884 scopus 로고    scopus 로고
    • Data mining for target marketing
    • In: O. Maimon and L. Rokach (eds.), Springer, New York
    • Levin, N. and J. Zahavi. 2005. Data mining for target marketing, p. 1261- 1304. In: O. Maimon and L. Rokach (eds.). Data mining and knowledge discovery handbook. Springer, New York.
    • (2005) Data Mining and Knowledge Discovery Handbook , pp. 1261-1304
    • Levin, N.1    Zahavi, J.2
  • 22
    • 84869591901 scopus 로고    scopus 로고
    • 1 Mar 2008, Louisiana agriclimatic information
    • Louisiana Agriclimatic Information. 2008. Louisiana agriclimatic information. 1 Mar. 2008. http://www.lsuagcenter.com/weather/index.asp.
    • (2008) Louisiana Agriclimatic Information
  • 23
    • 35248862454 scopus 로고    scopus 로고
    • Support vector machine regression for the prediction of maize hybrid performance
    • Maenhout, S., B. De Baets, G. Haesaert, and E. Van Bockstaele. 2007. Support vector machine regression for the prediction of maize hybrid performance. Theor. Appl. Genet. 115:1003-1013.
    • (2007) Theor. Appl. Genet. , vol.115 , pp. 1003-1013
    • Maenhout, S.1    De Baets, B.2    Haesaert, G.3    Van Bockstaele, E.4
  • 24
    • 35348882616 scopus 로고    scopus 로고
    • Introduction to knowledge discovery in databases
    • In: O. Maimon and L. Rokach (eds.), . Springer, New York
    • Maimon, O. and L. Rokach. 2005. Introduction to knowledge discovery in databases, p. 1-20. In: O. Maimon and L. Rokach (eds.). Data mining and knowledge discovery handbook. Springer, New York.
    • (2005) Data Mining and Knowledge Discovery Handbook , pp. 1-20
    • Maimon, O.1    Rokach, L.2
  • 25
    • 19044383581 scopus 로고    scopus 로고
    • Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions
    • Park, S.J., C.S. Hwang, and P.L.G. Vlek. 2005. Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agr. Systems 85:59-81.
    • (2005) Agr. Systems , vol.85 , pp. 59-81
    • Park, S.J.1    Hwang, C.S.2    Vlek, P.L.G.3
  • 26
    • 0030024495 scopus 로고    scopus 로고
    • A heat unit accumulation method for predicting cucumber harvest date
    • Perry, K.B. and T.C. Wehner. 1996. A heat unit accumulation method for predicting cucumber harvest date. Hort- Technology 6:27-30.
    • (1996) Hort- Technology , vol.6 , pp. 27-30
    • Perry, K.B.1    Wehner, T.C.2
  • 27
    • 0001013332 scopus 로고
    • Comparison of 14 methods to determine heat unit requirements for cucumber harvest
    • Perry, K.B., T.C. Wehner, and G.L. Johnson. 1986. Comparison of 14 methods to determine heat unit requirements for cucumber harvest. HortScience 21:419-423.
    • (1986) HortScience , vol.21 , pp. 419-423
    • Perry, K.B.1    Wehner, T.C.2    Johnson, G.L.3
  • 30
    • 0030864160 scopus 로고    scopus 로고
    • A model to predict peach phenology and maturity using meteorological variables
    • Schwartz, M.D., G.J. Carbone, G.L. Reighard, and W.R. Okie. 1997. A model to predict peach phenology and maturity using meteorological variables. Hort- Science 32:213-216.
    • (1997) Hort- Science , vol.32 , pp. 213-216
    • Schwartz, M.D.1    Carbone, G.J.2    Reighard, G.L.3    Okie, W.R.4
  • 31
    • 33745470998 scopus 로고    scopus 로고
    • Critical weed-free period for Beauregard sweetpotato (Ipomoea batatas)
    • Seem, J.E., N. Creamer, and D.W. Monks. 2003. Critical weed-free period for Beauregard sweetpotato (Ipomoea batatas). Weed Technol. 17:686- 695.
    • (2003) Weed Technol. , vol.17 , pp. 686-695
    • Seem, J.E.1    Creamer, N.2    Monks, D.W.3
  • 32
    • 84869579745 scopus 로고    scopus 로고
    • 18 Aug
    • Snyder, R.L. 2005. Degree days. 18 Aug. 2008. http://atm.ucdavis.edu/ ;biomet/DegreeDays/DegDay.htm.
    • (2005) Degree Days , pp. 2008
    • Snyder, R.L.1
  • 33
    • 84869580146 scopus 로고    scopus 로고
    • 18 Aug.2008
    • Statsoft. 2008. Statsoft electronic textbook. 18 Aug. 2008. http://www.stat soft.com/textbook/stathome.html.
    • (2008) Statsoft Electronic Textbook
  • 34
    • 33745877285 scopus 로고    scopus 로고
    • Maturation curves and degree-days accumulation for fruits of Folha 'murcha' orange trees
    • Stenzel, N.M.C., C.S.V.J. Neves, C.J. Marur, M.B.S. Scholz, and J.C. Gomes. 2006. Maturation curves and degree-days accumulation for fruits of 'Folha murcha' orange trees. Scientia Agricola 63:219-225.
    • (2006) Scientia Agricola , vol.63 , pp. 219-225
    • Stenzel, N.M.C.1    Neves, C.S.V.J.2    Marur, C.J.3    Scholz, M.B.S.4    Gomes, J.C.5
  • 35
    • 84869564538 scopus 로고    scopus 로고
    • Sweetpotato research trials 2002 research progress report
    • 15 Aug. 2008
    • Stoddard, S.C. and B. Weir. 2002. Sweetpotato research trials 2002 research progress report. Univ. California Coop. Ext. 15 Aug. 2008. http://cemerced.ucdavis.edu/files/19101.pdf.
    • (2002) Univ. California Coop. Ext.
    • Stoddard, S.C.1    Weir, B.2
  • 36
    • 0003052334 scopus 로고
    • A study of tuberous root formation in sweet potato
    • Tokyo
    • Togari, Y. 1950. A study of tuberous root formation in sweet potato. Bul. Natl. Agr. Expt. Sta. Tokyo 68:1-96.
    • (1950) Bul. Natl. Agr. Expt. Sta. , vol.68 , pp. 1-96
    • Togari, Y.1
  • 37
    • 3142689845 scopus 로고    scopus 로고
    • Irrigation termination of cotton: An economic analysis of yield, quality, and market factors
    • Tronstad, R., J.C. Silvertooth, and S. Husman. 2003. Irrigation termination of cotton: An economic analysis of yield, quality, and market factors. J. Cotton Sci. 7:86-94.
    • (2003) J. Cotton Sci. , vol.7 , pp. 86-94
    • Tronstad, R.1    Silvertooth, J.C.2    Husman, S.3
  • 38
    • 33845422649 scopus 로고    scopus 로고
    • Using multivariate adaptive regression splines (MARS) to identify relationships between soil and corn (Zea mays L.) production properties
    • Turpin, K.M., D.R. Lapen, E.G. Gregorich, G.C. Topp, M. Edwards, N.B. McLaughlin, W.E. Curnoe, and M.J.L. Robin. 2005. Using multivariate adaptive regression splines (MARS) to identify relationships between soil and corn (Zea mays L.) production properties. Can. J. Soil Sci. 85:625-636.
    • (2005) Can. J. Soil Sci. , vol.85 , pp. 625-636
    • Turpin, K.M.1    Lapen, D.R.2    Gregorich, E.G.3    Topp, G.C.4    Edwards, M.5    McLaughlin, N.B.6    Curnoe, W.E.7    Robin, M.J.L.8
  • 40
    • 0003589181 scopus 로고    scopus 로고
    • U.S. Department of Agriculture, 18 Aug. 2008
    • U.S. Department of Agriculture. 2005. United States standards for grades of sweetpotatoes. 18 Aug. 2008. http://www.ams.usda.gov/AMSv1.0/getfile? dDocName=STELPRDC5050330.
    • (2005) United States Standards for Grades of Sweetpotatoes
  • 41
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • In: M. Mozer, M. Jordan, and T. Petsche (eds.)
    • Vapnik, V., S. Golowich, and A. Smola. 1997. Support vector method for function approximation, regression estimation, and signal processing, p. 281-287.In: M. Mozer, M. Jordan, and T. Petsche (eds.). Advances in neural information processing systems 9. 2-5 Dec. 1996. Denver, CO.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 42
    • 15944411826 scopus 로고    scopus 로고
    • Predicting cotton boll maturation period during degree days and other climatic factors
    • Viator, R.P., R.C. Nuti, K.L. Edmisten, and R. Wells. 2005. Predicting cotton boll maturation period during degree days and other climatic factors. Agron. J. 97: 494-499.
    • (2005) Agron. J. , vol.97 , pp. 494-499
    • Viator, R.P.1    Nuti, R.C.2    Edmisten, K.L.3    Wells, R.4
  • 45
    • 4243145453 scopus 로고    scopus 로고
    • Wurr, D.C.E. and J.R. Fellows. 1984. The growth of three crisp lettuce varieties from different sowing dates. J. Agr. Sci. Cambridge 102:733-745.
    • , vol.102 , pp. 733-745
  • 48
    • 68049121474 scopus 로고    scopus 로고
    • Neural networks
    • In: O. Maimon and L. Rokach (eds.), Springer, New York
    • Zhang, P.G. 2005. Neural networks, p. 487-516. In: O. Maimon and L. Rokach (eds.). Data mining and knowledge discovery handbook. Springer, New York.
    • (2005) Data Mining and Knowledge Discovery Handbook , pp. 487-516
    • Zhang, P.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.