메뉴 건너뛰기




Volumn 79, Issue 3, 2009, Pages

Diffusion-induced instability and chaos in random oscillator networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX GINZBURG-LANDAU EQUATIONS; CONTINUOUS MEDIAS; DIFFUSIONAL COUPLINGS; DYNAMICAL PATTERNS; DYNAMICAL REGIMES; LIMIT-CYCLE OSCILLATORS; MEAN-FIELD THEORIES; NETWORK ANALOGS; NON-LINEAR DYNAMICS; NUMERICAL INVESTIGATIONS; OSCILLATOR NETWORKS; PARTIAL AMPLITUDES; RANDOM NETWORKS; SCALE-FREE NETWORKS;

EID: 65449145228     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.79.036214     Document Type: Article
Times cited : (38)

References (23)
  • 1
    • 0035826155 scopus 로고    scopus 로고
    • 10.1038/35065725
    • S. H. Strogatz, Nature (London) 410, 268 (2001). 10.1038/35065725
    • (2001) Nature (London) , vol.410 , pp. 268
    • Strogatz, S.H.1
  • 3
    • 42749105023 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.70.026116
    • T. Ichinomiya, Phys. Rev. E 70, 026116 (2004). 10.1103/PhysRevE.70.026116
    • (2004) Phys. Rev. E , vol.70 , pp. 026116
    • Ichinomiya, T.1
  • 5
    • 47249127645 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.78.016203
    • T.-W. Ko and G. B. Ermentrout, Phys. Rev. E 78, 016203 (2008). 10.1103/PhysRevE.78.016203
    • (2008) Phys. Rev. E , vol.78 , pp. 016203
    • T.-W. Ko1    Ermentrout, G.B.2
  • 6
    • 63049125213 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.79.026219
    • S. Gil and A. S. Mikhailov, Phys. Rev. E 79, 026219 (2009). 10.1103/PhysRevE.79.026219
    • (2009) Phys. Rev. E , vol.79 , pp. 026219
    • Gil, S.1    Mikhailov, A.S.2
  • 9
    • 0001518165 scopus 로고
    • 10.1103/PhysRevA.46.R7347;
    • V. Hakim and W.-J. Rappel, Phys. Rev. A 46, R7347 (1992) 10.1103/PhysRevA.46.R7347
    • (1992) Phys. Rev. A , vol.46 , pp. 7347
    • Hakim, V.1    W.-J. Rappel2
  • 12
    • 0012045293 scopus 로고    scopus 로고
    • 10.1016/S0375-9601(98)00869-X
    • M. Banaji and P. Glendinning, Phys. Lett. A 251, 297 (1999). 10.1016/S0375-9601(98)00869-X
    • (1999) Phys. Lett. A , vol.251 , pp. 297
    • Banaji, M.1    Glendinning, P.2
  • 13
  • 14
    • 4243124667 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.76.4352;
    • Y. Kuramoto and H. Nakao, Phys. Rev. Lett. 76, 4352 (1996) 10.1103/PhysRevLett.76.4352
    • (1996) Phys. Rev. Lett. , vol.76 , pp. 4352
    • Kuramoto, Y.1    Nakao, H.2
  • 15
    • 0033474320 scopus 로고    scopus 로고
    • 10.1063/1.166463
    • H. Nakao, Chaos 9, 902 (1999). 10.1063/1.166463
    • (1999) Chaos , vol.9 , pp. 902
    • Nakao, H.1
  • 19
    • 65449132749 scopus 로고    scopus 로고
    • In, it is reported that the asymmetric limit cycle can coexist with the fixed points in a certain parameter region, where the transition with hysteresis occurs via a saddle-node bifurcation of the fixed points followed by a homoclinic or Hopf bifurcation of the limit cycle. In the case of Fig. 3, the transition near β=0.435 occurs by a saddle node on invariant circle (SNIC) bifurcation without hysteresis, and coexistence of fixed points with the asymmetric limit cycle does not take place. Note that coexistence of multiple attractors in the dynamics of individual oscillators, which actually occurs in the two-cluster state [Fig. 3], does not affect our argument as long as the global mean field is approximately sinusoidal.
    • In, it is reported that the asymmetric limit cycle can coexist with the fixed points in a certain parameter region, where the transition with hysteresis occurs via a saddle-node bifurcation of the fixed points followed by a homoclinic or Hopf bifurcation of the limit cycle. In the case of Fig. 3, the transition near β=0.435 occurs by a saddle node on invariant circle (SNIC) bifurcation without hysteresis, and coexistence of fixed points with the asymmetric limit cycle does not take place. Note that coexistence of multiple attractors in the dynamics of individual oscillators, which actually occurs in the two-cluster state [Fig. 3], does not affect our argument as long as the global mean field is approximately sinusoidal.
  • 20
    • 65449130390 scopus 로고    scopus 로고
    • Though we do not give details in the present paper, we can further develop a self-consistency analysis for the sinusoidal global mean field H (t) to determine B and Ω from the condition that the H (t) imposed on Eq. 6 coincide with the H (t) resulting from Eq. 5. This gives good agreement with direct numerical results for 0≤K<0.05, where H (t) vanishes or oscillates sinusoidally and each individual oscillator has a single attractor. For larger values of K where H (t) is not sinusoidal or some of the individual oscillators have multiple attractors (e.g., bistable fixed points), such a simple sinusoidal self-consistency analysis fails. See Chabanol
    • Though we do not give details in the present paper, we can further develop a self-consistency analysis for the sinusoidal global mean field H (t) to determine B and Ω from the condition that the H (t) imposed on Eq. 6 coincide with the H (t) resulting from Eq. 5. This gives good agreement with direct numerical results for 0≤K<0.05, where H (t) vanishes or oscillates sinusoidally and each individual oscillator has a single attractor. For larger values of K where H (t) is not sinusoidal or some of the individual oscillators have multiple attractors (e.g., bistable fixed points), such a simple sinusoidal self-consistency analysis fails. See Chabanol for elaborate analysis of the globally coupled CGL oscillators.
  • 22
    • 42749099087 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.69.036213;
    • S.-i. Shima and Y. Kuramoto, Phys. Rev. E 69, 036213 (2004) 10.1103/PhysRevE.69.036213
    • (2004) Phys. Rev. E , vol.69 , pp. 036213
    • S.-i. Shima1    Kuramoto, Y.2
  • 23


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.