-
1
-
-
0035826155
-
-
10.1038/35065725
-
S. H. Strogatz, Nature (London) 410, 268 (2001). 10.1038/35065725
-
(2001)
Nature (London)
, vol.410
, pp. 268
-
-
Strogatz, S.H.1
-
3
-
-
42749105023
-
-
10.1103/PhysRevE.70.026116
-
T. Ichinomiya, Phys. Rev. E 70, 026116 (2004). 10.1103/PhysRevE.70.026116
-
(2004)
Phys. Rev. E
, vol.70
, pp. 026116
-
-
Ichinomiya, T.1
-
4
-
-
56549084695
-
-
10.1016/j.physrep.2008.09.002
-
A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Phys. Rep. 469, 93 (2008). 10.1016/j.physrep.2008.09.002
-
(2008)
Phys. Rep.
, vol.469
, pp. 93
-
-
Arenas, A.1
Díaz-Guilera, A.2
Kurths, J.3
Moreno, Y.4
Zhou, C.5
-
5
-
-
47249127645
-
-
10.1103/PhysRevE.78.016203
-
T.-W. Ko and G. B. Ermentrout, Phys. Rev. E 78, 016203 (2008). 10.1103/PhysRevE.78.016203
-
(2008)
Phys. Rev. E
, vol.78
, pp. 016203
-
-
T.-W. Ko1
Ermentrout, G.B.2
-
6
-
-
63049125213
-
-
10.1103/PhysRevE.79.026219
-
S. Gil and A. S. Mikhailov, Phys. Rev. E 79, 026219 (2009). 10.1103/PhysRevE.79.026219
-
(2009)
Phys. Rev. E
, vol.79
, pp. 026219
-
-
Gil, S.1
Mikhailov, A.S.2
-
8
-
-
0035907088
-
-
10.1126/science.1059478
-
M. Kim, M. Bertram, M. Pollmann, A. von Oertzen, A. S. Mikhailov, H. H. Rotermund, and G. Ertl, Science 292, 1357 (2001). 10.1126/science.1059478
-
(2001)
Science
, vol.292
, pp. 1357
-
-
Kim, M.1
Bertram, M.2
Pollmann, M.3
Von Oertzen, A.4
Mikhailov, A.S.5
Rotermund, H.H.6
Ertl, G.7
-
9
-
-
0001518165
-
-
10.1103/PhysRevA.46.R7347;
-
V. Hakim and W.-J. Rappel, Phys. Rev. A 46, R7347 (1992) 10.1103/PhysRevA.46.R7347
-
(1992)
Phys. Rev. A
, vol.46
, pp. 7347
-
-
Hakim, V.1
W.-J. Rappel2
-
12
-
-
0012045293
-
-
10.1016/S0375-9601(98)00869-X
-
M. Banaji and P. Glendinning, Phys. Lett. A 251, 297 (1999). 10.1016/S0375-9601(98)00869-X
-
(1999)
Phys. Lett. A
, vol.251
, pp. 297
-
-
Banaji, M.1
Glendinning, P.2
-
13
-
-
85009499615
-
-
10.1143/PTP.94.321;
-
Y. Kuramoto, Prog. Theor. Phys. 94, 321 (1995) 10.1143/PTP.94.321
-
(1995)
Prog. Theor. Phys.
, vol.94
, pp. 321
-
-
Kuramoto, Y.1
-
14
-
-
4243124667
-
-
10.1103/PhysRevLett.76.4352;
-
Y. Kuramoto and H. Nakao, Phys. Rev. Lett. 76, 4352 (1996) 10.1103/PhysRevLett.76.4352
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 4352
-
-
Kuramoto, Y.1
Nakao, H.2
-
15
-
-
0033474320
-
-
10.1063/1.166463
-
H. Nakao, Chaos 9, 902 (1999). 10.1063/1.166463
-
(1999)
Chaos
, vol.9
, pp. 902
-
-
Nakao, H.1
-
19
-
-
65449132749
-
-
In, it is reported that the asymmetric limit cycle can coexist with the fixed points in a certain parameter region, where the transition with hysteresis occurs via a saddle-node bifurcation of the fixed points followed by a homoclinic or Hopf bifurcation of the limit cycle. In the case of Fig. 3, the transition near β=0.435 occurs by a saddle node on invariant circle (SNIC) bifurcation without hysteresis, and coexistence of fixed points with the asymmetric limit cycle does not take place. Note that coexistence of multiple attractors in the dynamics of individual oscillators, which actually occurs in the two-cluster state [Fig. 3], does not affect our argument as long as the global mean field is approximately sinusoidal.
-
In, it is reported that the asymmetric limit cycle can coexist with the fixed points in a certain parameter region, where the transition with hysteresis occurs via a saddle-node bifurcation of the fixed points followed by a homoclinic or Hopf bifurcation of the limit cycle. In the case of Fig. 3, the transition near β=0.435 occurs by a saddle node on invariant circle (SNIC) bifurcation without hysteresis, and coexistence of fixed points with the asymmetric limit cycle does not take place. Note that coexistence of multiple attractors in the dynamics of individual oscillators, which actually occurs in the two-cluster state [Fig. 3], does not affect our argument as long as the global mean field is approximately sinusoidal.
-
-
-
-
20
-
-
65449130390
-
-
Though we do not give details in the present paper, we can further develop a self-consistency analysis for the sinusoidal global mean field H (t) to determine B and Ω from the condition that the H (t) imposed on Eq. 6 coincide with the H (t) resulting from Eq. 5. This gives good agreement with direct numerical results for 0≤K<0.05, where H (t) vanishes or oscillates sinusoidally and each individual oscillator has a single attractor. For larger values of K where H (t) is not sinusoidal or some of the individual oscillators have multiple attractors (e.g., bistable fixed points), such a simple sinusoidal self-consistency analysis fails. See Chabanol
-
Though we do not give details in the present paper, we can further develop a self-consistency analysis for the sinusoidal global mean field H (t) to determine B and Ω from the condition that the H (t) imposed on Eq. 6 coincide with the H (t) resulting from Eq. 5. This gives good agreement with direct numerical results for 0≤K<0.05, where H (t) vanishes or oscillates sinusoidally and each individual oscillator has a single attractor. For larger values of K where H (t) is not sinusoidal or some of the individual oscillators have multiple attractors (e.g., bistable fixed points), such a simple sinusoidal self-consistency analysis fails. See Chabanol for elaborate analysis of the globally coupled CGL oscillators.
-
-
-
-
22
-
-
42749099087
-
-
10.1103/PhysRevE.69.036213;
-
S.-i. Shima and Y. Kuramoto, Phys. Rev. E 69, 036213 (2004) 10.1103/PhysRevE.69.036213
-
(2004)
Phys. Rev. E
, vol.69
, pp. 036213
-
-
S.-i. Shima1
Kuramoto, Y.2
|