-
3
-
-
0001459571
-
Comparison principles for impulsive parabolic equations with applications to models of singles species growth
-
Erbe L., Freedman H.I., Liu X., Wu J.H.. Comparison principles for impulsive parabolic equations with applications to models of singles species growth. J. Austral. Math. Soc., Ser. B. 32(1991), 382-400.
-
(1991)
J. Austral. Math. Soc., Ser. B
, vol.32
, pp. 382-400
-
-
Erbe, L.1
Freedman, H.I.2
Liu, X.3
Wu, J.H.4
-
4
-
-
0030871508
-
Comparison results for systems of impulsive parabolic equations with applications to population dynamics
-
Kirane M., Rogovchenko V. Comparison results for systems of impulsive parabolic equations with applications to population dynamics. Nonlin. Anal.; 28(1997), 263-276.
-
(1997)
Nonlin. Anal
, vol.28
, pp. 263-276
-
-
Kirane, M.1
Rogovchenko, V.2
-
5
-
-
0033104380
-
On delayed impulsive Hopfield neural networks
-
Guan Z.H, Chen G.R. On delayed impulsive Hopfield neural networks. Neural Networks, 12(1999), 273-280.
-
(1999)
Neural Networks
, vol.12
, pp. 273-280
-
-
Guan, Z.H.1
Chen, G.R.2
-
6
-
-
0033967086
-
On impulsive auto-associative neural networks
-
Guan Z.H, Lam J, Chen G.R. On impulsive auto-associative neural networks. Neural Networks, 13(2000), 63-69.
-
(2000)
Neural Networks
, vol.13
, pp. 63-69
-
-
Guan, Z.H.1
Lam, J.2
Chen, G.R.3
-
7
-
-
8444222334
-
Global exponential stability and existence of periodic solution of Hop-field-type neural networks with impulses
-
Li Y.K., Lu L. Global exponential stability and existence of periodic solution of Hop-field-type neural networks with impulses. Physics Letters A, 333(2004), 62-71.
-
(2004)
Physics Letters A
, vol.333
, pp. 62-71
-
-
Li, Y.K.1
Lu, L.2
-
8
-
-
9644255680
-
Global exponential stability of BAM neural networks with delays and impulses
-
Li Y.K. Global exponential stability of BAM neural networks with delays and impulses. Chaos Soliton. Fract., 24(2005), 279-285.
-
(2005)
Chaos Soliton. Fract
, vol.24
, pp. 279-285
-
-
Li, Y.K.1
-
9
-
-
10744225331
-
Continuous-time additive Hopfield-type neural networks with impulses
-
Akca H., Alassar R., Covachev V., Covacheva Z., Al-Zahrani E.. Continuous-time additive Hopfield-type neural networks with impulses. J. Math. Analy. Appl. 290(2004), 436-451.
-
(2004)
J. Math. Analy. Appl
, vol.290
, pp. 436-451
-
-
Akca, H.1
Alassar, R.2
Covachev, V.3
Covacheva, Z.4
Al-Zahrani, E.5
-
10
-
-
0033164492
-
Impulsive stabilization of functional differential equations by Lyapu-nov- Razumikhin functions
-
Yan J.S., Shen J.H. Impulsive stabilization of functional differential equations by Lyapu-nov- Razumikhin functions. Nonlinear Analysis, 37(1999), 245-255.
-
(1999)
Nonlinear Analysis
, vol.37
, pp. 245-255
-
-
Yan, J.S.1
Shen, J.H.2
-
11
-
-
33645767418
-
An improved approach to nonlinear dynamical system identification using PID neural networks
-
Li S. J., Liu Y.X. An improved approach to nonlinear dynamical system identification using PID neural networks. Int. J. Nonlin. Sci. Num., 7(2), (2006), 177-182.
-
(2006)
Int. J. Nonlin. Sci. Num
, vol.7
, Issue.2
, pp. 177-182
-
-
Li, S.J.1
Liu, Y.X.2
-
12
-
-
17844397205
-
The spike order of the winnerless competition (WLC) model and its application to the inhibition neural system
-
Liu S. Q., Fan T., Lu Q. S. The spike order of the winnerless competition (WLC) model and its application to the inhibition neural system. Int. J. Nonlin. Sci. Num., 6 (2), (2005), 133-138.
-
(2005)
Int. J. Nonlin. Sci. Num
, vol.6
, Issue.2
, pp. 133-138
-
-
Liu, S.Q.1
Fan, T.2
Lu, Q.S.3
-
13
-
-
10944269194
-
Periodic oscillatory solution to delayed BAM neural networks with impulses
-
Liu Z. G., Chen A. P., Huang L.H.. Periodic oscillatory solution to delayed BAM neural networks with impulses. Int. J. Nonlin. Sci. Num., 5 (4), (2004), 355-362.
-
(2004)
Int. J. Nonlin. Sci. Num
, vol.5
, Issue.4
, pp. 355-362
-
-
Liu, Z.G.1
Chen, A.P.2
Huang, L.H.3
-
14
-
-
40549142427
-
Some advance in nonlinear stochastic evolution models for phase resetting dynamics on populations of neuronal oscillators
-
Wang R. B., Jiao X. F., Duan Y. B. Some advance in nonlinear stochastic evolution models for phase resetting dynamics on populations of neuronal oscillators. Int. J. Nonlin. Sci. Num., 4 (4), (2003), 435-446.
-
(2003)
Int. J. Nonlin. Sci. Num
, vol.4
, Issue.4
, pp. 435-446
-
-
Wang, R.B.1
Jiao, X.F.2
Duan, Y.B.3
|