-
4
-
-
84906400728
-
-
de Gennes, P. Weak Nematic Gels. In Liquid Crystals of One- and Two-Dimensional Order and Their Applications; Helfrich, W., Heppke, G., Eds.; Springer-Verlag: Garmishc-Partenkirchenm, Germany, 1980; pp 231- 237.
-
de Gennes, P. Weak Nematic Gels. In Liquid Crystals of One- and Two-Dimensional Order and Their Applications; Helfrich, W., Heppke, G., Eds.; Springer-Verlag: Garmishc-Partenkirchenm, Germany, 1980; pp 231- 237.
-
-
-
-
5
-
-
0004254996
-
-
Ciferi, A, Krigbaum, W, Meyer, R. B, Eds, Academic Press: New York
-
Polymer Liquid Crystals; Ciferi, A., Krigbaum, W., Meyer, R. B., Eds.; Academic Press: New York, 1982.
-
(1982)
Polymer Liquid Crystals
-
-
-
6
-
-
6144223893
-
-
de Gennes, P.; Hebert, M.; Kant, R. Macromol. Symp. 1997, 113, 39-49.
-
(1997)
Macromol. Symp
, vol.113
, pp. 39-49
-
-
de Gennes, P.1
Hebert, M.2
Kant, R.3
-
9
-
-
0002707896
-
-
Warner, M.; Bladon, P.; Terentjev, E. M. J. Phys. II (France) 1994, 4, 93-102.
-
(1994)
J. Phys. II (France)
, vol.4
, pp. 93-102
-
-
Warner, M.1
Bladon, P.2
Terentjev, E.M.3
-
13
-
-
0030242904
-
-
Verwey, G. C.; Warner, M.; Terentjev, E. M. J. Phys. II (France) 1996, 6, 1273-1290.
-
(1996)
J. Phys. II (France)
, vol.6
, pp. 1273-1290
-
-
Verwey, G.C.1
Warner, M.2
Terentjev, E.M.3
-
17
-
-
33751514007
-
-
Finkelmann, H.; Kundler, I.; Terentjev, E. M.; Warner, M. J. Phys. II (Paris) 1997, 7, 1059-1069.
-
(1997)
J. Phys. II (Paris)
, vol.7
, pp. 1059-1069
-
-
Finkelmann, H.1
Kundler, I.2
Terentjev, E.M.3
Warner, M.4
-
19
-
-
0036642594
-
-
Conti, S.; DeSimone, A.; Dolzmann, G. J. Mech. Phys. Solids 2002, 50, 1431-1451.
-
(2002)
J. Mech. Phys. Solids
, vol.50
, pp. 1431-1451
-
-
Conti, S.1
DeSimone, A.2
Dolzmann, G.3
-
25
-
-
0003849707
-
-
Printice-Hall, Inc, Englewood Cliffs, NJ
-
Marsden, J. E.; Hughes, T. J. Mathematical Foundations of Elasticity; Printice-Hall, Inc.: Englewood Cliffs, NJ, 1968.
-
(1968)
Mathematical Foundations of Elasticity
-
-
Marsden, J.E.1
Hughes, T.J.2
-
27
-
-
27144526178
-
-
Lebar, A.; Kutnjak, Z.; Zumer, S.; Finkelmann, H.; Sanchez-Ferrer, A.; Zalar, B. Phys. Rev. Lett. 2005, 94, 197801.
-
(2005)
Phys. Rev. Lett
, vol.94
, pp. 197801
-
-
Lebar, A.1
Kutnjak, Z.2
Zumer, S.3
Finkelmann, H.4
Sanchez-Ferrer, A.5
Zalar, B.6
-
28
-
-
33748656505
-
-
Rogez, D.; Francius, G.; Finkelmann, H.; Martinoty, P. Eur. Phys. J. E 2006, 20, 369-378.
-
(2006)
Eur. Phys. J. E
, vol.20
, pp. 369-378
-
-
Rogez, D.1
Francius, G.2
Finkelmann, H.3
Martinoty, P.4
-
29
-
-
33344467048
-
-
Brand, H. R.; Pleiner, H.; Martinoty, P. Soft Matter 2006, 2, 182- 189.
-
(2006)
Soft Matter
, vol.2
, pp. 182-189
-
-
Brand, H.R.1
Pleiner, H.2
Martinoty, P.3
-
31
-
-
34147182110
-
-
Frisken, B. J.; Bergersen, B.; Palffy-Muhoray, P. Mol. Cryst. Liq. Cryst. 1987, 148, 45.
-
(1987)
Mol. Cryst. Liq. Cryst
, vol.148
, pp. 45
-
-
Frisken, B.J.1
Bergersen, B.2
Palffy-Muhoray, P.3
-
32
-
-
0002088441
-
-
Bladon, P.; Terentjev, E. M.; Warner, M. J. Phys. II (France) 1994, 4, 75-91.
-
(1994)
J. Phys. II (France)
, vol.4
, pp. 75-91
-
-
Bladon, P.1
Terentjev, E.M.2
Warner, M.3
-
33
-
-
84906357591
-
-
The free energy density of an elastomer can always be written as f =f el(u, fQ (Q̃, f c(u, Q̃, Here Q is the tensor constructed to transform, like u, as a tensor under rotations in the reference space [see ref 34 for details, Thus uijQ̃Qij is a scalar, whereas u ¡jQ¡j is not because Q ¡j transforms as a tensor under rotations in the target and not the reference space. The conversion between Q and Q is implemented with the aid of the polar decomposition theorem: Λ, OΛs, where Λs, ΛTΛ)1/2, δ, 2u)1/2 is the symmetric deformation tensor, and O, ΛΛs -1/2 is an orthogonal rotation matrix whose left index transforms in the target space and whose right index transforms in the references space. Th
-
eff[u] =-T ln ∫D̃Q̃ exp(-F[u, Q]/T ) depends only on u. This energy can be expressed in terms of a Landau expansion in u. A theory in terms of the symmetric-traceless part of u only can then be obtained by integrating out Tru. The integration over Q gives rise to a shear modulus μ that passes through zero if there is an isotropic-to-nematic transition in /ρ(Q) [see ref 35]. A theory, like the neoclassical theory, expressed in terms of Λ and Q can be converted into one in terms of u and Q using the polar decomposition results above.
-
-
-
-
35
-
-
41349084958
-
-
011702/1-22
-
Lubensky, T. C.; Mukhopadhyay, R.; Radzihovsky, L.; Xing, X. J. Phys. Rev. E 2002, 66, 011702/1-22.
-
(2002)
Phys. Rev. E
, vol.66
-
-
Lubensky, T.C.1
Mukhopadhyay, R.2
Radzihovsky, L.3
Xing, X.J.4
-
37
-
-
34147149082
-
-
Ye, F.; Mukhopadhyay, R.; Stenull, O.; Lubensky, T. C. Phys. Rev. Lett. 2007, 98, 147801.
-
(2007)
Phys. Rev. Lett
, vol.98
, pp. 147801
-
-
Ye, F.1
Mukhopadhyay, R.2
Stenull, O.3
Lubensky, T.C.4
-
39
-
-
84906372076
-
-
Tricritical points are characterized by three fields: the temperature, the ordering field that aligns the order parameter, and the non-ordering field that couples not to the order parameter but to another field that can make the ordered phase disappear. The classical tricritical point occurs in He- He3 mixtures. The order parameter is the superfluid condensate wavefunction ψ, and the ordering field is the field h conjugate to it. Increasing He3 concentration tends to destroy superfluid order, and the non-ordering field is the He3 chemical potential, μ 3. The T -h -μ 3 phase diagram in the vicinity of the tricritical point has the same geometry as that shown in Figure 4 near the tricritical point tZ, The order parameter of the semi-soft phase SZ is η, Decreases in the uniaxial order parameter S destroy the semi-soft phase near and below tZ just as increases in the He3 concentration destroy the superflu
-
Tricritical points are characterized by three fields: the temperature, the ordering field that aligns the order parameter, and the non-ordering field that couples not to the order parameter but to another field that can make the ordered phase disappear. The classical tricritical point occurs in He- He3 mixtures. The order parameter is the superfluid condensate wavefunction ψ, and the ordering field is the field h conjugate to it. Increasing He3 concentration tends to destroy superfluid order, and the non-ordering field is the He3 chemical potential, μ 3. The T -h -μ 3 phase diagram in the vicinity of the tricritical point has the same geometry as that shown in Figure 4 near the tricritical point tZ . The order parameter of the semi-soft phase SZ is η . Decreases in the uniaxial order parameter S destroy the semi-soft phase near and below tZ just as increases in the He3 concentration destroy the superfluid phase. Since σxxuxx + huzz ) σxxη 1 + (2h - " σxx )S /3, the ordering field, which induces η 1 ) ηx, is σxx, and the nonordering field, which induces changes in S, is (2h - " σxx )/3.
-
-
-
-
40
-
-
26544461319
-
-
Blume, M.; Emery, V. J.; Griffith, R. Phys. Rev. A 1971, 4, 1071.
-
(1971)
Phys. Rev. A
, vol.4
, pp. 1071
-
-
Blume, M.1
Emery, V.J.2
Griffith, R.3
-
41
-
-
41349119548
-
-
Conti, S.; DeSimone, A.; Dolzmann, G. Phys. Rev. E 2002, 66, 061710.
-
(2002)
Phys. Rev. E
, vol.66
, pp. 061710
-
-
Conti, S.1
DeSimone, A.2
Dolzmann, G.3
|