메뉴 건너뛰기




Volumn 4, Issue 4, 2006, Pages 731-739

EXISTENCE OF TRAVELING WAVE SOLUTIONS IN A HYPERBOLIC-ELLIPTIC SYSTEM OF EQUATIONS

Author keywords

Hyperbolic elliptic system; Singular perturbations; Traveling wave solutions

Indexed keywords


EID: 65249136916     PISSN: 15396746     EISSN: 19450796     Source Type: Journal    
DOI: 10.4310/CMS.2006.v4.n4.a3     Document Type: Article
Times cited : (11)

References (16)
  • 1
    • 0001208318 scopus 로고    scopus 로고
    • Travelling wave solutions of a fourth-order semilinear diffusion equation
    • [1]
    • [1] M. E. Akveld and J. Hulshof, Travelling wave solutions of a fourth-order semilinear diffusion equation, Appl. Math. Letters, 11, 115-120, 1998.
    • (1998) Appl. Math. Letters , vol.11 , pp. 115-120
    • Akveld, M. E.1    Hulshof, J.2
  • 2
    • 0000079636 scopus 로고    scopus 로고
    • Cytoplasm dynamics and cell motion: two-phase flow models
    • [2]
    • [2] W. Alt and M. Dembo, Cytoplasm dynamics and cell motion: two-phase flow models, Math. Biosci., 156, 207-228, 1999.
    • (1999) Math. Biosci , vol.156 , pp. 207-228
    • Alt, W.1    Dembo, M.2
  • 5
    • 0001054458 scopus 로고
    • On a tissue interaction model for skin pattern formation
    • [5]
    • [5] G. C. Cruywagen and J. D. Murray, On a tissue interaction model for skin pattern formation, J. Nonlin. Sci., 2, 217-240, 1992.
    • (1992) J. Nonlin. Sci , vol.2 , pp. 217-240
    • Cruywagen, G. C.1    Murray, J. D.2
  • 6
    • 34250627892 scopus 로고
    • Geometric singular perturbation theory for ordinary differential equations
    • [6]
    • [6] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eqn., 31, 53-98, 1979.
    • (1979) J. Diff. Eqn , vol.31 , pp. 53-98
    • Fenichel, N.1
  • 8
    • 0344896624 scopus 로고    scopus 로고
    • Chemotactic cellular migration: smooth and discontinuous travelling wave solutions
    • [8]
    • [8] J. A. Landman, G. J. Pettet and D. F. Newgrene, Chemotactic cellular migration: smooth and discontinuous travelling wave solutions, SIAM J. Appl. Math., 63, 1666-1681, 2003.
    • (2003) SIAM J. Appl. Math , vol.63 , pp. 1666-1681
    • Landman, J. A.1    Pettet, G. J.2    Newgrene, D. F.3
  • 9
    • 21344472255 scopus 로고    scopus 로고
    • Asymptotic expansion for layer solutions of a singularity perturbed reaction-diffusion system
    • [9]
    • [9] X.-B. Lin, Asymptotic expansion for layer solutions of a singularity perturbed reaction-diffusion system, Trans. Amer. Math. Soc., 348, 713-753, 1996.
    • (1996) Trans. Amer. Math. Soc , vol.348 , pp. 713-753
    • Lin, X.-B.1
  • 11
    • 0003475470 scopus 로고
    • [11] 2nd ed., Springer-Verlag, Heidelberg
    • [11] J. D. Murray, Mathematical Biology, 2nd ed., Springer-Verlag, Heidelberg, 1993.
    • (1993) Mathematical Biology
    • Murray, J. D.1
  • 12
    • 0002670122 scopus 로고    scopus 로고
    • A mathematical model of vascular tumour growth and invasion
    • [12]
    • [12] M. E. Orme and M. A. J. Chaplain, A mathematical model of vascular tumour growth and invasion, Math. Comput. Modell. 23, 43-60, 1996.
    • (1996) Math. Comput. Modell , vol.23 , pp. 43-60
    • Orme, M. E.1    Chaplain, M. A. J.2
  • 14
    • 10044257560 scopus 로고    scopus 로고
    • Stability of steady states and existence of travelling waves in a vector-disease model
    • [14]
    • [14] S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model, Proc. R. Soc. Edinb. A 134, 991-1011, 2004.
    • (2004) Proc. R. Soc. Edinb. A , vol.134 , pp. 991-1011
    • Ruan, S.1    Xiao, D.2
  • 15
    • 84974487746 scopus 로고
    • Invariant manifold in singular perturbation problems for ordinary differential equations
    • [15]
    • [15] K. Sakamoto, Invariant manifold in singular perturbation problems for ordinary differential equations, Proc. R. Soc. Edinb. A, 116, 45-78, 1990.
    • (1990) Proc. R. Soc. Edinb. A , vol.116 , pp. 45-78
    • Sakamoto, K.1
  • 16
    • 0025935485 scopus 로고
    • Mathematical analysis of a basic model for epidermal wound healing
    • [16]
    • [16] J. A. Sherratt and J. D. Murray, Mathematical analysis of a basic model for epidermal wound healing, J. Math. Biol., 29, 389-404, 1991.
    • (1991) J. Math. Biol , vol.29 , pp. 389-404
    • Sherratt, J. A.1    Murray, J. D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.