메뉴 건너뛰기




Volumn 113, Issue 15, 2009, Pages 5141-5148

Crystal nucleation in the hard-sphere system revisited: a critical test of theoretical approaches

Author keywords

[No Author keywords available]

Indexed keywords

CRYSTAL SYMMETRY; EQUATIONS OF STATE OF LIQUIDS; FREE ENERGY; INTERFACIAL ENERGY; MONTE CARLO METHODS; PHASE INTERFACES;

EID: 65249128560     PISSN: 15206106     EISSN: None     Source Type: Journal    
DOI: 10.1021/jp8097439     Document Type: Article
Times cited : (12)

References (62)
  • 1
    • 84906379810 scopus 로고    scopus 로고
    • For reviews on crystal nucleation, see
    • For reviews on crystal nucleation, see
  • 9
    • 84906393713 scopus 로고    scopus 로고
    • Atomistic simulations for HS system: Alder, B. J, Wainwright, T. E. J. Chem. Phys. 1960, 33, 1439, ref 3. Woodcock, L. V. J. Chem. Soc, Faraday Discuss. 1976, 72, 731. Erpenbeck, J. J, Wood, W. W. J. Stat. Phys. 1984, 35, 321. Barosova, M, Kolafa, J. Reported in ref 7. Equations of state for fluid: Carnahan, N. F, Starling, K. E. J. Chem. Phys. 1969, 51, 635. Hall, K. R. J. Chem. Phys. 1972, 57, 2252. Le Fevre, E. J. Nature (London) 1972, 325, 20. Andrews, F. C. J. Chem. Phys. 1975, 62, 272. Baus, M, Colot, J. L. Phys. Rev. A 1987, 36, 3912. Maeso, M. J, Solana, J. R, Amoros, J, Villar, E. J. Chem. Phys. 1991, 94, 551. Sanchez, I. C. J. Chem. Phys. 1994, 101, 7003. Wang, W, Khoshkbarchi, M. K, Vera, J. H. Fluid Phase Equilib. 1996, 115, 25. Malijev
    • Atomistic simulations for HS system: Alder, B. J.; Wainwright, T. E. J. Chem. Phys. 1960, 33, 1439, ref 3. Woodcock, L. V. J. Chem. Soc., Faraday Discuss. 1976, 72, 731. Erpenbeck, J. J.; Wood, W. W. J. Stat. Phys. 1984, 35, 321. Barosova, M.; Kolafa, J. Reported in ref 7. Equations of state for fluid: Carnahan, N. F.; Starling, K. E. J. Chem. Phys. 1969, 51, 635. Hall, K. R. J. Chem. Phys. 1972, 57, 2252. Le Fevre, E. J. Nature (London) 1972, 325, 20. Andrews, F. C. J. Chem. Phys. 1975, 62, 272. Baus, M.; Colot, J. L. Phys. Rev. A 1987, 36, 3912. Maeso, M. J.; Solana, J. R.; Amoros, J.; Villar, E. J. Chem. Phys. 1991, 94, 551. Sanchez, I. C. J. Chem. Phys. 1994, 101, 7003. Wang, W.; Khoshkbarchi, M. K.; Vera, J. H. Fluid Phase Equilib. 1996, 115, 25. Malijevsky, A.; Veverka, J. Phys. Chem. Chem. Phys. 1999, 1, 4267. Kolafa, J.; Labik, S.; Malijevsky, A. Phys. Chem. Chem. Phys. 2004, 6, 2335. Equations of state for fcc crystal: Hall, K. R. J. Chem. Phys. 1972, 57, 2252. Speedy, R. J. J. Phys.: Condens. Matter 1998, 10, 4387. Chang, J.; Sandler, S. I. J. Chem. Phys. 2003, 118, 8390.
  • 12
    • 65249189688 scopus 로고    scopus 로고
    • Diploma Thesis, Technical University Budapest, Hungary
    • Tóth, G. I. Diploma Thesis, Technical University Budapest, Hungary, 2004.
    • (2004)
    • Tóth, G.I.1
  • 22
    • 84906393714 scopus 로고    scopus 로고
    • Farkas, L. Z. Phys. Chem. (Lepzig) A 1935, 125, 236. Becker, R.; Döring, W, Ann. Phys. (Paris, Fr.) 1935, 24, 719. Turnbull, D.; Fisher, J. C J. Chem. Phys. 1949, 17, 71.
    • Farkas, L. Z. Phys. Chem. (Lepzig) A 1935, 125, 236. Becker, R.; Döring, W, Ann. Phys. (Paris, Fr.) 1935, 24, 719. Turnbull, D.; Fisher, J. C J. Chem. Phys. 1949, 17, 71.
  • 23
    • 36549100713 scopus 로고    scopus 로고
    • Girshick, S. L.; Chiu, C. P. J. Chem. Phys. 1990, 93, 1273. Girshick, S. L. J. Chem. Phys. 1991, 94, 826.
    • Girshick, S. L.; Chiu, C. P. J. Chem. Phys. 1990, 93, 1273. Girshick, S. L. J. Chem. Phys. 1991, 94, 826.
  • 29
    • 34548097013 scopus 로고    scopus 로고
    • Tóth, G. I.; Gránásy, L. J. Chem. Phys. 2007, 127, 074709; 074710; PFT/S1-single component limit of binary PFT/S used in these papers; PFT/ GL1-single component limit of binary PFT/GL.
    • Tóth, G. I.; Gránásy, L. J. Chem. Phys. 2007, 127, 074709; 074710; PFT/S1-single component limit of binary PFT/S used in these papers; PFT/ GL1-single component limit of binary PFT/GL.
  • 30
    • 84906365621 scopus 로고    scopus 로고
    • Continuum models of crystal nucleation:(a) Oxtoby, D. W. In Liquids, Freezing and Glass Transition; eds. Hansen, J. P., Levesque, D., Zinn-Justin, J., Eds.; Elsevier: Amsterdam, 1991; p 145.
    • Continuum models of crystal nucleation:(a) Oxtoby, D. W. In Liquids, Freezing and Glass Transition; eds. Hansen, J. P., Levesque, D., Zinn-Justin, J., Eds.; Elsevier: Amsterdam, 1991; p 145.
  • 32
    • 4143057463 scopus 로고    scopus 로고
    • Shen, Y. C.; Oxtoby, D. W J. Chem. Phys. 1996, 104, 4233; 1996, 105, 2130.
    • (c) Shen, Y. C.; Oxtoby, D. W J. Chem. Phys. 1996, 104, 4233; 1996, 105, 2130.
  • 37
    • 84906393712 scopus 로고    scopus 로고
    • For example, Broughton, J. Q.; Gilmer, G. H. J. Chem. Phys. 1986, 84, 5749; Laird, B. B.; Haymet, A. D. J. Chem. Rev. 1992, 92, 1819; Sibug- Aga, R.; Laird, B. B. Phys. Rev. B 2002,66, 144106; Ramalingam, H.; Asta, M.; van der Walle, A.; Hoyt, J. J. Interface Sci. 2002, 10, 149.
    • For example, Broughton, J. Q.; Gilmer, G. H. J. Chem. Phys. 1986, 84, 5749; Laird, B. B.; Haymet, A. D. J. Chem. Rev. 1992, 92, 1819; Sibug- Aga, R.; Laird, B. B. Phys. Rev. B 2002,66, 144106; Ramalingam, H.; Asta, M.; van der Walle, A.; Hoyt, J. J. Interface Sci. 2002, 10, 149.
  • 38
    • 84906408372 scopus 로고    scopus 로고
    • Howe, J. M. Philos. Mag. A 1996, 74, 761. Schumacher, P.; Greer, A. L. In Light Metals; Hale, W., Ed.; The Minerals, Metals, and Materials Society: Warrendale, PA, 1996; p 745. Huisman, W. J.; Peters, J. F.; Zwanenburg, M. J.; de Wries, S. A.; Derry, T. E.; Abernathy, D.; van der Veen, J. F. Nature 1997, 390, 379. Howe, J. M.; Saka, H. MRS Bull. 2004, 29, 951. van der Veen, J. F.; Reichert, H. MRS Bull. 2004, 29, 958.
    • Howe, J. M. Philos. Mag. A 1996, 74, 761. Schumacher, P.; Greer, A. L. In Light Metals; Hale, W., Ed.; The Minerals, Metals, and Materials Society: Warrendale, PA, 1996; p 745. Huisman, W. J.; Peters, J. F.; Zwanenburg, M. J.; de Wries, S. A.; Derry, T. E.; Abernathy, D.; van der Veen, J. F. Nature 1997, 390, 379. Howe, J. M.; Saka, H. MRS Bull. 2004, 29, 951. van der Veen, J. F.; Reichert, H. MRS Bull. 2004, 29, 958.
  • 39
    • 33746012315 scopus 로고    scopus 로고
    • Cahn, J. W.; Hilliard, J. E. J. Chem. Phys. 1958, 28, 258; 1959, 31, 688. Warren, J. A.; Boettinger, W. J. Acta Metall. Mater. 1995, 43, 689.
    • Cahn, J. W.; Hilliard, J. E. J. Chem. Phys. 1958, 28, 258; 1959, 31, 688. Warren, J. A.; Boettinger, W. J. Acta Metall. Mater. 1995, 43, 689.
  • 42
    • 36849098219 scopus 로고    scopus 로고
    • Equations of state by K. R. Hall (J. Chem. Phys. 1972, 57, 2252): fluid phase, eq 11; solid phase, eq 13.
    • Equations of state by K. R. Hall (J. Chem. Phys. 1972, 57, 2252): fluid phase, eq 11; solid phase, eq 13.
  • 43
    • 84906365620 scopus 로고    scopus 로고
    • The surface of tension is the surface at which the surface tension acts. It is the surface for which the generalized Laplace equation, Δp c ) 2γ /R + ∂γ /∂R reduces to the original one, that is, ∂γ /∂R 0. Here, Δp c is the capillary pressure.
    • The surface of tension is the surface at which the surface tension acts. It is the surface for which the generalized Laplace equation, Δp c ) 2γ /R + ∂γ /∂R reduces to the original one, that is, ∂γ /∂R ) 0. Here, Δp c is the capillary pressure.
  • 50
    • 34147162778 scopus 로고    scopus 로고
    • Tolmans original definition ( Tolman, R. C. J. Chem. Phys. 1949, 17, 333). A different definition is applied by several authors: δ T ) limR f R e- R p. In our terminology, the latter corresponds to the equilibrium Tolman length, δ T,eq.
    • Tolmans original definition ( Tolman, R. C. J. Chem. Phys. 1949, 17, 333). A different definition is applied by several authors: δ T ) limR f R e- R p. In our terminology, the latter corresponds to the equilibrium Tolman length, δ T,eq.
  • 52
    • 84906379809 scopus 로고    scopus 로고
    • Defined by the position of a step function that has the same spatial integral and amplitude as the interfacial density profile
    • Defined by the position of a step function that has the same spatial integral and amplitude as the interfacial density profile.
  • 54
    • 84906408370 scopus 로고    scopus 로고
    • Field theoretic models of the vapor-liquid interface predict a strongly size dependent Tolman length that has a positive value for small droplets and tends to a negative value in the large particle limit. See, for example, Fisher, M. P. A, Wortis, M. Phys. Rev. B 1984, 29, 625. Iwamatsu, M. J. Phys, Condens. Matter 1994, 6, L173. Hadjiagapiou, I. J. Phys, Condens. Matter 1994, 6, 5303. Talanquer, V, Oxtoby, D. W. J. Phys. Chem. 1995, 99, 2865. van Giessen, A. E, Blokhuis, E. M, Bukman, D. J. J. Chem. Phys. 1998, 108, 1148. Gránásy, L. J. Chem. Phys. 1998, 109, 9660. Barrett, J. J. Chem. Phys. 1999, 111, 5938. Barrett, J. C. J. Chem. Phys. 2006, 127, 144705. Hruby, J, Labetski, D. G, van Dongen, M. E. H. J. Chem. Phys. 2007, 127, 164720
    • Field theoretic models of the vapor-liquid interface predict a strongly size dependent Tolman length that has a positive value for small droplets and tends to a negative value in the large particle limit. See, for example, Fisher, M. P. A.; Wortis, M. Phys. Rev. B 1984, 29, 625. Iwamatsu, M. J. Phys.: Condens. Matter 1994, 6, L173. Hadjiagapiou, I. J. Phys.: Condens. Matter 1994, 6, 5303. Talanquer, V.; Oxtoby, D. W. J. Phys. Chem. 1995, 99, 2865. van Giessen, A. E.; Blokhuis, E. M.; Bukman, D. J. J. Chem. Phys. 1998, 108, 1148. Gránásy, L. J. Chem. Phys. 1998, 109, 9660. Barrett, J. J. Chem. Phys. 1999, 111, 5938. Barrett, J. C. J. Chem. Phys. 2006, 127, 144705. Hruby, J.; Labetski, D. G.; van Dongen, M. E. H. J. Chem. Phys. 2007, 127, 164720.
  • 55
    • 84906408371 scopus 로고    scopus 로고
    • Goldman, J. I.; White, J. A. J. Chem. Phys. 1988, 89, 6403. Speedy, R. J. J. Chem. Phys. 1994, 100, 6684. Sanchez, I. C. J. Chem. Phys. 1994, 101, 7003. Rintoul, M. D.; Torquato, S. J. Chem. Phys. 1996, 105, 9258. Gruhn, T.; Monson, P. A. Phys. Rev. E 2001, 64, 061703. Wu, G.-W.; Sadus, R. J. AIChE J. 2005, 51, 309.
    • Goldman, J. I.; White, J. A. J. Chem. Phys. 1988, 89, 6403. Speedy, R. J. J. Chem. Phys. 1994, 100, 6684. Sanchez, I. C. J. Chem. Phys. 1994, 101, 7003. Rintoul, M. D.; Torquato, S. J. Chem. Phys. 1996, 105, 9258. Gruhn, T.; Monson, P. A. Phys. Rev. E 2001, 64, 061703. Wu, G.-W.; Sadus, R. J. AIChE J. 2005, 51, 309.
  • 57
    • 4043107549 scopus 로고    scopus 로고
    • Rosenfeld, Y.; Schmidt, M.; Lowen, H.; Tarazona, P. Phys. Rev. E 1997, 55, 4245. Tarazona, P. Phys. A 2002, 306, 243.
    • Rosenfeld, Y.; Schmidt, M.; Lowen, H.; Tarazona, P. Phys. Rev. E 1997, 55, 4245. Tarazona, P. Phys. A 2002, 306, 243.
  • 58
    • 5244346853 scopus 로고    scopus 로고
    • Schatzel, K.; Ackerson, B. J. Phys. Rev. E 1993, 48, 3766. Harland, J. L.; van Megen, W. Phys. Rev. E 1997, 55, 3054. Palberg, T J. Phys.: Condens. Matter 1999, 11, R323. Sinn, C.; Heymann, A.; Stipp, A.; Palberg, T. Trends Colloid Interface Sci. 2001, 118, 266.
    • Schatzel, K.; Ackerson, B. J. Phys. Rev. E 1993, 48, 3766. Harland, J. L.; van Megen, W. Phys. Rev. E 1997, 55, 3054. Palberg, T J. Phys.: Condens. Matter 1999, 11, R323. Sinn, C.; Heymann, A.; Stipp, A.; Palberg, T. Trends Colloid Interface Sci. 2001, 118, 266.
  • 60
    • 84906365619 scopus 로고    scopus 로고
    • Nucleation theories predict the expression J, J 0 exp{-W */kT, for the steady-state nucleation rate,2a where J 0 is the pre-exponential factor depending on the molecular mobility and the size of the critical fluctuation, while W * is the free energy of the critical fluctuation (nucleus, Experimental studies imply that J 0 from the kinetic approach of the CNT describes properly the temperature dependence of the nucleation rate.2a,b Langer 's first principles approach offers an independent way to estimate J 0 [Langer, J. S. Ann. Phys, N.Y, 1967, 41, 108; 1969, 54, 258, In the few cases where J 0 has been evaluated following this route e.g, for vapor condensation: Langer, J. S, Turski, L. A. Phys. Rev. A 1973, 8, 3230, it leads to results very close to those from the classical kinetic approach. For crystal nucleation, Langer 's approach has only been
    • Nucleation theories predict the expression J ) J 0 exp{-W */kT } for the steady-state nucleation rate,2a where J 0 is the pre-exponential factor depending on the molecular mobility and the size of the critical fluctuation, while W * is the free energy of the critical fluctuation (nucleus). Experimental studies imply that J 0 from the kinetic approach of the CNT describes properly the temperature dependence of the nucleation rate.2a,b Langer 's first principles approach offers an independent way to estimate J 0 [Langer, J. S. Ann. Phys. (N.Y.) 1967, 41, 108; 1969, 54, 258]. In the few cases where J 0 has been evaluated following this route (e.g., for vapor condensation: Langer, J. S.; Turski, L. A. Phys. Rev. A 1973, 8, 3230), it leads to results very close to those from the classical kinetic approach. For crystal nucleation, Langer 's approach has only been used to evaluate J 0 under the assumption that thermal transport is the rate determining factor (Grant, M.; Gunton, J. D. Phys. Rev. B 1985, 32, 7300). However, usually this is not the case, as normally molecular mobility determines the time scale of nucleation.2a Atomistic simulations imply that for the Lennard-Jones system J 0 from the classical kinetic approach might be too low by about 2 orders of magnitude.2c This indicates that some uncertainty has to be associated with the nucleation barrier if evaluated from the measured nucleation rates using the classical J 0.2a A further difficulty is that often steady state nucleation is assumed when evaluating the experiments without testing whether this assumption is valid. An even more essential source of error can be the presence of heterogeneous nucleation induced by foreign particles distributed in the volume. It cannot be easily distinguished from homogeneous nucleation, and the interpretation of heterogeneous nucleation as homogeneous might lead to a serious underestimation of the free energy of nuclei.2a Apparently, the experimental nucleation rates for various colloidal approximants of the HS system scatter substantially (see, e.g., Figure 5 inGong, T. Y.; Shen, J. G.; Hu, Z. B.; Marquez, M.; Cheng, Z. D. Langmuir 2007, 23, 2919), casting doubts to their relevance to the true HS system.
  • 62
    • 0035880894 scopus 로고    scopus 로고
    • Laird, B. B. J. Chem. Phys. 2001, 115, 2887. Laird, B. B.; Davidchack, R. L. J. Phys. Chem. B 2005, 109, 17802.
    • Laird, B. B. J. Chem. Phys. 2001, 115, 2887. Laird, B. B.; Davidchack, R. L. J. Phys. Chem. B 2005, 109, 17802.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.