메뉴 건너뛰기




Volumn 17, Issue 1, 2009, Pages 53-81

Calculus on fractal subsets of real line - I: Formulation

Author keywords

Cantor Functions; Dimensions; Fractal Derivative; Fractal Differential Equations; Fractal Integral; Sobolev Spaces on Sublinear Fractals

Indexed keywords

CALCULATIONS; DIFFERENTIAL EQUATIONS; FRACTAL DIMENSION; INTEGRAL EQUATIONS; LYAPUNOV FUNCTIONS; SOBOLEV SPACES; STAIRS;

EID: 65249084633     PISSN: 0218348X     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218348X09004181     Document Type: Article
Times cited : (160)

References (52)
  • 2
    • 0004240525 scopus 로고
    • A. Bunde and S. Havlin eds, Springer
    • A. Bunde and S. Havlin (eds.), Fractals in Science (Springer, 1995).
    • (1995) Fractals in Science
  • 8
    • 43949160695 scopus 로고
    • Fractional model equation for anomalous diffusion
    • R. Metzler, W. G. Glöckle and T. F. Nonnenmacher, Fractional model equation for anomalous diffusion, Physica A 211(1) (1994) 13-24.
    • (1994) Physica A , vol.211 , Issue.1 , pp. 13-24
    • Metzler, R.1    Glöckle, W.G.2    Nonnenmacher, T.F.3
  • 9
    • 18144408075 scopus 로고    scopus 로고
    • Anomalous diffusion and relaxation close thermal equilibrium: A fractional Fokker-Planck equation approach
    • R. Metzler, E. Barkai and J. Klafter, Anomalous diffusion and relaxation close thermal equilibrium: a fractional Fokker-Planck equation approach, Phys. Rev. Lett. 83 (1999) 3563.
    • (1999) Phys. Rev. Lett , vol.83 , pp. 3563
    • Metzler, R.1    Barkai, E.2    Klafter, J.3
  • 10
    • 0000437484 scopus 로고
    • Fractional master equations and fractal time random walks
    • R. Hilfer and L. Anton, Fractional master equations and fractal time random walks, Phys. Rev. E 51 (1995) R848.
    • (1995) Phys. Rev. E , vol.51
    • Hilfer, R.1    Anton, L.2
  • 11
    • 0000582309 scopus 로고    scopus 로고
    • Stochastic foundations of fractional dynamics
    • A. Compte, Stochastic foundations of fractional dynamics, Phys. Rev. E 53(4) (1996) 4191.
    • (1996) Phys. Rev. E , vol.53 , Issue.4 , pp. 4191
    • Compte, A.1
  • 12
    • 43949160116 scopus 로고
    • Fractional kinetic equation for Hamiltonian chaos
    • G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos, Physica D 76 (1994) 110-122.
    • (1994) Physica D , vol.76 , pp. 110-122
    • Zaslavsky, G.M.1
  • 13
    • 0036887936 scopus 로고    scopus 로고
    • Chaos, fractional kinetics, and anomalous transport
    • G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep. 371 (2002) 461-580.
    • (2002) Phys. Rep , vol.371 , pp. 461-580
    • Zaslavsky, G.M.1
  • 14
    • 0345149511 scopus 로고    scopus 로고
    • Anomalous transport in disordered systems under the influence of external fields
    • R. Metzler, E. Barkai and J. Klafter, Anomalous transport in disordered systems under the influence of external fields, Physica A 266 (1999) 343-350.
    • (1999) Physica A , vol.266 , pp. 343-350
    • Metzler, R.1    Barkai, E.2    Klafter, J.3
  • 15
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: A fractional dynamics approach
    • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000) 1-77.
    • (2000) Phys. Rep , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 16
    • 0033750757 scopus 로고    scopus 로고
    • Fractional diffusion based on Riemann- Liouville fractional derivatives
    • R. Hilfer, Fractional diffusion based on Riemann- Liouville fractional derivatives, J. Phys. Chem. B 104 (2000) 3914.
    • (2000) J. Phys. Chem. B , vol.104 , pp. 3914
    • Hilfer, R.1
  • 17
    • 0040655648 scopus 로고    scopus 로고
    • Fractional differentiability of nowhere differentiable functions and dimensions
    • K. M. Kolwankar and A. D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos 6 (1996) 505.
    • (1996) Chaos , vol.6 , pp. 505
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 18
    • 0030671988 scopus 로고    scopus 로고
    • Holder exponents of irregular signals and local fractional derivatives
    • K. M. Kolwankar and A. D. Gangal, Holder exponents of irregular signals and local fractional derivatives, Pramana 48 (1997) 49-68.
    • (1997) Pramana , vol.48 , pp. 49-68
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 19
    • 0001707390 scopus 로고    scopus 로고
    • Local fractional Fokker-Planck equation
    • K. M. Kolwankar and A. D. Gangal, Local fractional Fokker-Planck equation, Phys. Rev. Lett. 80 (1998) 214.
    • (1998) Phys. Rev. Lett , vol.80 , pp. 214
    • Kolwankar, K.M.1    Gangal, A.D.2
  • 21
    • 0035891478 scopus 로고    scopus 로고
    • About non-differentiable functions
    • F. B. Adda and J. Cresson, About non-differentiable functions, J. Math. Anal. Appl. 263 (2001) 721-737.
    • (2001) J. Math. Anal. Appl , vol.263 , pp. 721-737
    • Adda, F.B.1    Cresson, J.2
  • 22
  • 23
    • 0032665134 scopus 로고    scopus 로고
    • Fractional calculus and the evolution of fractal phenomena
    • A. Rocco and B. J. West, Fractional calculus and the evolution of fractal phenomena, Physica A 265 (1999) 535.
    • (1999) Physica A , vol.265 , pp. 535
    • Rocco, A.1    West, B.J.2
  • 24
    • 85193407553 scopus 로고    scopus 로고
    • M. T. Barlow, Diffusion on Fractals, Lecture Notes, Math. 1690 (Springer, 1998).
    • M. T. Barlow, Diffusion on Fractals, Lecture Notes, Math. Vol. 1690 (Springer, 1998).
  • 26
    • 0347917936 scopus 로고    scopus 로고
    • Fractal differential equations on the Sierpinski gasket
    • K. Dalrymple, R. S. Strichartz and J. P. Vinson, Fractal differential equations on the Sierpinski gasket, J. Fourier Anal. Appl. 5(2) (1999) 205-287.
    • (1999) J. Fourier Anal. Appl , vol.5 , Issue.2 , pp. 205-287
    • Dalrymple, K.1    Strichartz, R.S.2    Vinson, J.P.3
  • 27
    • 0002586468 scopus 로고    scopus 로고
    • Taylor approximations on Sierpinski gasket type fractals
    • R. S. Strichartz, Taylor approximations on Sierpinski gasket type fractals, J. Funct. Anal. 174(1) (2000) 76-127.
    • (2000) J. Funct. Anal , vol.174 , Issue.1 , pp. 76-127
    • Strichartz, R.S.1
  • 29
    • 0141457500 scopus 로고    scopus 로고
    • Harmonic calculus on fractals a measure geometric approach I
    • U. Freiberg and M. Zähle, Harmonic calculus on fractals a measure geometric approach I, Potential Anal. 16 (2002) 265-277.
    • (2002) Potential Anal , vol.16 , pp. 265-277
    • Freiberg, U.1    Zähle, M.2
  • 30
    • 15744385792 scopus 로고    scopus 로고
    • Harmonic calculus on fractals A measure geometric approach II
    • Preprint
    • U. Freiberg and M. Zähle, Harmonic calculus on fractals A measure geometric approach II, Preprint (2000).
    • (2000)
    • Freiberg, U.1    Zähle, M.2
  • 31
    • 0242510919 scopus 로고    scopus 로고
    • Analytical properties of measure geometric Krein-Feller-perrators on the real line
    • U. Freiberg, Analytical properties of measure geometric Krein-Feller-perrators on the real line, Math. Nachr. 260 (2003) 34-47.
    • (2003) Math. Nachr , vol.260 , pp. 34-47
    • Freiberg, U.1
  • 32
    • 84985351199 scopus 로고
    • Generalized second order differential operators
    • J. U. Löbus, Generalized second order differential operators, Math. Nachr. 152 (1991) 229-245.
    • (1991) Math. Nachr , vol.152 , pp. 229-245
    • Löbus, J.U.1
  • 33
    • 0007465111 scopus 로고
    • A fractional dimension, self-similarity and a generalized diffusion operator
    • T. Fujita, A fractional dimension, self-similarity and a generalized diffusion operator, in Taniguchi Symp. PMMP Katata (1985), pp. 83-90.
    • (1985) Taniguchi Symp. PMMP Katata , pp. 83-90
    • Fujita, T.1
  • 34
    • 0004242019 scopus 로고
    • 2nd edn, Prentice-Hall India Pvt. Ltd
    • D. V. Widder, Advanced Calculus, 2nd edn. (Prentice-Hall India Pvt. Ltd., 1974).
    • (1974) Advanced Calculus
    • Widder, D.V.1
  • 41
    • 84963056917 scopus 로고
    • Analogues of the Lebesgue density theorem for fractal sets of reals and integers
    • T. Bedford and A. M. Fisher, Analogues of the Lebesgue density theorem for fractal sets of reals and integers, Proc. Lond. Math. Soc. 64(3) (1992) 95-124.
    • (1992) Proc. Lond. Math. Soc , vol.64 , Issue.3 , pp. 95-124
    • Bedford, T.1    Fisher, A.M.2
  • 42
    • 0010760026 scopus 로고
    • Fractional differentiation in the self-affine case I random functions
    • N. Patzschke and M. Zähle, Fractional differentiation in the self-affine case I random functions, Stochastic Proc. Appl. 43 (1992) 165-175.
    • (1992) Stochastic Proc. Appl , vol.43 , pp. 165-175
    • Patzschke, N.1    Zähle, M.2
  • 43
    • 38249002999 scopus 로고
    • Fractional differentiation in the self-affine case II extremal processes
    • N. Patzschke and M. Zähle, Fractional differentiation in the self-affine case II extremal processes, Stochastic Proc. Appl. 45 (1993) 61-72.
    • (1993) Stochastic Proc. Appl , vol.45 , pp. 61-72
    • Patzschke, N.1    Zähle, M.2
  • 44
    • 84966214106 scopus 로고
    • Fractional differentiation in the self-affine case III the density of the Cantor set
    • N. Patzschke and M. Zähle, Fractional differentiation in the self-affine case III the density of the Cantor set, Proc. Am. Math. Soc. 117(1) (1993) 137-144.
    • (1993) Proc. Am. Math. Soc , vol.117 , Issue.1 , pp. 137-144
    • Patzschke, N.1    Zähle, M.2
  • 45
    • 0031447221 scopus 로고    scopus 로고
    • Fractional differentiation in the self-affine case V the local degree of differentiability
    • M. Zähle, Fractional differentiation in the self-affine case V the local degree of differentiability, Math. Nachr. 185 (1997) 279-306.
    • (1997) Math. Nachr , vol.185 , pp. 279-306
    • Zähle, M.1
  • 46
    • 0035509430 scopus 로고    scopus 로고
    • Fractional Langevin equation
    • E. Lutz, Fractional Langevin equation, Phys. Rev. E 64 (2001) 051106.
    • (2001) Phys. Rev. E , vol.64 , pp. 051106
    • Lutz, E.1
  • 49
    • 85193382419 scopus 로고    scopus 로고
    • A. Parvate and A. D. Gangal, Calculus on fractal subsets of real line II: conjugacy with ordinary calculus, in progress.
    • A. Parvate and A. D. Gangal, Calculus on fractal subsets of real line II: conjugacy with ordinary calculus, in progress.
  • 52
    • 0346810375 scopus 로고
    • Remarks on a known example of a monotone continuous function
    • E. Hille and J. D. Tamarkin, Remarks on a known example of a monotone continuous function, Am. Math. Mon. 36 (1929) 255-264.
    • (1929) Am. Math. Mon , vol.36 , pp. 255-264
    • Hille, E.1    Tamarkin, J.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.