-
6
-
-
5744249209
-
-
0021-9606 10.1063/1.1699114.
-
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 0021-9606 10.1063/1.1699114 21, 1087 (1953).
-
(1953)
J. Chem. Phys.
, vol.21
, pp. 1087
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
7
-
-
0033246389
-
-
0034-6861 10.1103/RevModPhys.71.1085.
-
S. Goedecker, Rev. Mod. Phys. 0034-6861 10.1103/RevModPhys.71.1085 71, 1085 (1999).
-
(1999)
Rev. Mod. Phys.
, vol.71
, pp. 1085
-
-
Goedecker, S.1
-
8
-
-
65149098948
-
-
2nd ed. (Wiley-VCH, New York);, (Oxford University Press, New York, 1989).
-
W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory, 2nd ed. (Wiley-VCH, New York, 2001); R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
-
(2001)
A Chemist's Guide to Density Functional Theory, Density-Functional Theory of Atoms and Molecules
-
-
Koch, W.1
Holthausen, M.C.2
Parr, R.G.3
Yang, W.4
-
9
-
-
0003418034
-
-
(Oxford University Press, New York).
-
Y. Yamaguchi, J. D. Goddard, Y. Osamura, and H. F. Schaefer, A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory (Oxford University Press, New York, 1994).
-
(1994)
A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
-
-
Yamaguchi, Y.1
Goddard, J.D.2
Osamura, Y.3
Schaefer, H.F.4
-
10
-
-
4243606192
-
-
0031-9007 10.1103/PhysRevLett.55.2471, ();, J. Phys.: Condens. Matter 0953-8984 10.1088/0953-8984/14/50/202 14, R1297 (2002).
-
R. Car and M. Parrinello, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett. 55.2471 55, 2471 (1985); M. E. Tuckerman, J. Phys.: Condens. Matter 0953-8984 10.1088/0953-8984/14/50/202 14, R1297 (2002).
-
(1985)
Phys. Rev. Lett.
, vol.55
, pp. 2471
-
-
Car, R.1
Parrinello, M.2
Tuckerman, M.E.3
-
13
-
-
65149105901
-
-
Of course the converse is also true, the most obvious manifestation of which is MC's limitation to equilibrium contexts.
-
Of course the converse is also true, the most obvious manifestation of which is MC's limitation to equilibrium contexts.
-
-
-
-
14
-
-
0000931954
-
-
0021-9606 10.1063/1.460188, ();, Mol. Phys. 0026-8976 10.1080/00268979400100481 81, 717 (1994);, Adv. Chem. Phys. 0065-2385 105, 461 (1998) 10.1002/9780470141649.ch15;, Mol. Simul. 0892-7022 10.1080/ 08927020801986564 34, 119 (2008).
-
M. S. Shaw, J. Chem. Phys. 0021-9606 10.1063/1.460188 94, 7550 (1991); J. K. Johnson, A. Z. Panagiotopoulos, and K. E. Gubbins, Mol. Phys. 0026-8976 10.1080/00268979400100481 81, 717 (1994); J. K. Johnson, Adv. Chem. Phys. 0065-2385 105, 461 (1998) 10.1002/9780470141649.ch15; C. Heath Turner, J. K. Brennan, M. Lisal, W. R. Smith, J. K. Johnson, and K. E. Gubbins, Mol. Simul. 0892-7022 10.1080/08927020801986564 34, 119 (2008).
-
(1991)
J. Chem. Phys.
, vol.94
, pp. 7550
-
-
Shaw, M.S.1
Johnson, J.K.2
Panagiotopoulos, A.Z.3
Gubbins, K.E.4
Johnson, J.K.5
Turner, C.H.6
Brennan, J.K.7
Lisal, M.8
Smith, W.R.9
Johnson, J.K.10
Gubbins, K.E.11
-
15
-
-
3342942064
-
-
0009-2614 10.1016/0009-2614(78)84003-2, ();, Mol. Phys. 0026-8976 10.1080/00268977900101321 37, 1773 (1979).
-
C. Pangali, M. Rao, and B. J. Berne, Chem. Phys. Lett. 0009-2614 10.1016/0009-2614(78)84003-2 55, 413 (1978); M. Rao, C. Pangali, and B. J. Berne, Mol. Phys. 0026-8976 10.1080/00268977900101321 37, 1773 (1979).
-
(1978)
Chem. Phys. Lett.
, vol.55
, pp. 413
-
-
Pangali, C.1
Rao, M.2
Berne, B.J.3
Rao, M.4
Pangali, C.5
Berne, B.J.6
-
17
-
-
0034272374
-
-
0021-9606 10.1063/1.1289534.
-
R. Iftimie, D. Salahub, D. Wei, and J. Schofield, J. Chem. Phys. 0021-9606 10.1063/1.1289534 113, 4852 (2000).
-
(2000)
J. Chem. Phys.
, vol.113
, pp. 4852
-
-
Iftimie, R.1
Salahub, D.2
Wei, D.3
Schofield, J.4
-
18
-
-
0038515446
-
-
0021-9606 10.1063/1.1563597.
-
L. D. Gelb, J. Chem. Phys. 0021-9606 10.1063/1.1563597 118, 7747 (2003).
-
(2003)
J. Chem. Phys.
, vol.118
, pp. 7747
-
-
Gelb, L.D.1
-
19
-
-
65149088216
-
-
These include two-surface MC and the molecular mechanics based importance function method. We eschew the first because it is too evocative of electronically excited states, and the second because it inaccurately characterizes the method's generality.
-
These include two-surface MC and the molecular mechanics based importance function method. We eschew the first because it is too evocative of electronically excited states, and the second because it inaccurately characterizes the method's generality.
-
-
-
-
20
-
-
21244487831
-
-
0021-9606 10.1063/1.1925273.
-
C. H. Mak, J. Chem. Phys. 0021-9606 10.1063/1.1925273 122, 214110 (2005).
-
(2005)
J. Chem. Phys.
, vol.122
, pp. 214110
-
-
Mak, C.H.1
-
21
-
-
17144438335
-
-
0021-9606 10.1063/1.1755195, ();, J. Chem. Phys. 0021-9606 10.1063/1.1512645 117, 8203 (2002).
-
K. Bernacki, B. Hetenyi, and B. J. Berne, J. Chem. Phys. 0021-9606 10.1063/1.1755195 121, 44 (2004); B. Hetenyi, K. Bernacki, and B. J. Berne, J. Chem. Phys. 0021-9606 10.1063/1.1512645 117, 8203 (2002).
-
(2004)
J. Chem. Phys.
, vol.121
, pp. 44
-
-
Bernacki, K.1
Hetenyi, B.2
Berne, B.J.3
Hetenyi, B.4
Bernacki, K.5
Berne, B.J.6
-
22
-
-
33747754187
-
-
0167-7322 10.1016/j.molliq.2006.03.008.
-
A. Brandt, V. Ilyin, N. Makedonska, and I. Suwan, J. Mol. Liq. 0167-7322 10.1016/j.molliq.2006.03.008 127, 37 (2006).
-
(2006)
J. Mol. Liq.
, vol.127
, pp. 37
-
-
Brandt, A.1
Ilyin, V.2
Makedonska, N.3
Suwan, I.4
-
23
-
-
32644458379
-
-
0031-9007 10.1103/PhysRevLett.96.028105, ();, J. Chem. Theory Comput. 1549-9618 10.1021/ct050337x 2, 656 (2006).
-
E. Lyman, F. M. Ytreberg, and D. M. Zuckerman, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.96.028105 96, 028105 (2006); E. Lyman and D. M. Zuckerman, J. Chem. Theory Comput. 1549-9618 10.1021/ct050337x 2, 656 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 028105
-
-
Lyman, E.1
Ytreberg, F.M.2
Zuckerman, D.M.3
Lyman, E.4
Zuckerman, D.M.5
-
24
-
-
34047170424
-
-
0021-9606 10.1063/1.2710790.
-
H. Li and W. Yang, J. Chem. Phys. 0021-9606 10.1063/1.2710790 126, 114104 (2007).
-
(2007)
J. Chem. Phys.
, vol.126
, pp. 114104
-
-
Li, H.1
Yang, W.2
-
25
-
-
22944471112
-
-
0021-9606 10.1063/1.1861890, ();, J. Chem. Phys. 0021-9606 10.1063/1.2899020 128, 134103 (2008);, Theor. Chem. Acc. 1432-881X 10.1007/s00214-007-0300-z 120, 307 (2008);, Chem. Phys. Lett. 0009-2614 10.1016/j.cplett.2005.10.026 417, 283 (2006);, J. Chem. Phys. 0021-9606 10.1063/1.1622653 119, 11285 (2003);, J. Chem. Phys. 0021-9606 10.1063/1.1357793 114, 6763 (2001);, Int. J. Quantum Chem. 0020-7608 10.1002/qua.10392 91, 404 (2003);, J. Phys. Chem. B 1089-5647 108, 12990 (2004) 10.1021/jp047788i;, J. Chem. Phys. 0021-9606 10.1063/1.2890725 128, 154110 (2008);, Mol. Phys. 0026-8976 10.1080/00268970601014781 104, 3619 (2006);, ChemPhysChem 1439-4235 10.1002/cphc.200400580 6, 1894 (2004);, Comput. Phys. Commun. 0010-4655 10.1016/j.cpc.2005.03.065 169, 289 (2005);, J. Chem. Theory Comput. 1549-9618 10.1021/ct600069r 2, 732 (2006);, J. Med. Chem. 0022-2623 10.1021/jm061021s 49, 7427 (2006).
-
P. Bandyopadhyay, J. Chem. Phys. 0021-9606 10.1063/1.1861890 122, 091102 (2005); P. Bandyopadhyay, J. Chem. Phys. 0021-9606 10.1063/1.2899020 128, 134103 (2008); P. Bandyopadhyay, Theor. Chem. Acc. 1432-881X 10.1007/s00214-007-0300-z 120, 307 (2008); L. D. Gelb and T. N. Carnahan, Chem. Phys. Lett. 0009-2614 10.1016/j.cplett.2005.10.026 417, 283 (2006); R. Iftimie, D. Salahub, and J. Schofield, J. Chem. Phys. 0021-9606 10.1063/1.1622653 119, 11285 (2003); R. Iftimie and J. Schofield, J. Chem. Phys. 0021-9606 10.1063/1.1357793 114, 6763 (2001); R. Iftimie and J. Schofield, Int. J. Quantum Chem. 0020-7608 10.1002/qua.10392 91, 404 (2003); I. -F. W. Kuo, C. J. Mundy, M. J. McGrath, J. I. Siepmann, J. VandeVondele, M. Sprik, J. Hutter, B. Chen, M. L. Klein, F. Mohamed, M. Krack, and M. Parrinello, J. Phys. Chem. B 1089-5647 108, 12990 (2004) 10.1021/jp047788i; D. R. Matusek, S. Osborne, and A. St-Amant, J. Chem. Phys. 0021-9606 10.1063/1.2890725 128, 154110 (2008); M. J. McGrath, J. I. Siepmann, I. -F. W. Kuo, and C. J. Mundy, Mol. Phys. 0026-8976 10.1080/00268970601014781 104, 3619 (2006); M. J. McGrath, J. I. Siepmann, I. -F. W. Kuo, C. J. Mundy, J. VandeVondele, J. Hutter, F. Mohamed, and M. Krack, ChemPhysChem 1439-4235 10.1002/cphc.200400580 6, 1894 (2004); M. J. McGrath, J. I. Siepmann, I. -F. W. Kuo, C. J. Mundy, J. VandeVondele, M. Sprik, J. Hutter, F. Mohamed, M. Krack, and M. Parrinello, Comput. Phys. Commun. 0010-4655 10.1016/j.cpc.2005.03.065 169, 289 (2005); J. Michel, R. D. Taylor, and J. W. Essex, J. Chem. Theory Comput. 1549-9618 10.1021/ct600069r 2, 732 (2006); J. Michel, M. L. Verdonik, and J. W. Essex, J. Med. Chem. 0022-2623 10.1021/jm061021s 49, 7427 (2006).
-
(2005)
J. Chem. Phys.
, vol.122
, pp. 091102
-
-
Bandyopadhyay, P.1
Bandyopadhyay, P.2
Bandyopadhyay, P.3
Gelb, L.D.4
Carnahan, T.N.5
Iftimie, R.6
Salahub, D.7
Schofield, J.8
Iftimie, R.9
Schofield, J.10
Iftimie, R.11
Schofield, J.12
Kuo, I.-F.W.13
Mundy, C.J.14
McGrath, M.J.15
Siepmann, J.I.16
Vandevondele, J.17
Sprik, M.18
Hutter, J.19
Chen, B.20
Klein, M.L.21
Mohamed, F.22
Krack, M.23
Parrinello, M.24
Matusek, D.R.25
Osborne, S.26
St-Amant, A.27
McGrath, M.J.28
Siepmann, J.I.29
Kuo, I.-F.W.30
Mundy, C.J.31
McGrath, M.J.32
Siepmann, J.I.33
Kuo, I.-F.W.34
Mundy, C.J.35
Vandevondele, J.36
Hutter, J.37
Mohamed, F.38
Krack, M.39
McGrath, M.J.40
Siepmann, J.I.41
Kuo, I.-F.W.42
Mundy, C.J.43
Vandevondele, J.44
Sprik, M.45
Hutter, J.46
Mohamed, F.47
Krack, M.48
Parrinello, M.49
Michel, J.50
Taylor, R.D.51
Essex, J.W.52
Michel, J.53
Verdonik, M.L.54
Essex, J.W.55
more..
-
26
-
-
65149093901
-
Equilibrium thermodynamics of dense fluid nitrogen as described by nested Markov chain Monte Carlo sampling of a density functional theory potential
-
(submitted).
-
J. D. Coe, T. D. Sewell, and M. S. Shaw, " Equilibrium thermodynamics of dense fluid nitrogen as described by nested Markov chain Monte Carlo sampling of a density functional theory potential.," J. Chem. Phys. (submitted).
-
J. Chem. Phys.
-
-
Coe, J.D.1
Sewell, T.D.2
Shaw, M.S.3
-
28
-
-
0010935593
-
-
0021-9606 10.1063/1.447770, ();, J. Chem. Phys. 0021-9606 10.1063/1.446807 80, 1279 (1984).
-
P. J. Hay, R. T. Pack, and R. L. Martin, J. Chem. Phys. 0021-9606 10.1063/1.447770 81, 1360 (1984); J. D. Johnson, M. S. Shaw, and B. L. Holian, J. Chem. Phys. 0021-9606 10.1063/1.446807 80, 1279 (1984).
-
(1984)
J. Chem. Phys.
, vol.81
, pp. 1360
-
-
Hay, P.J.1
Pack, R.T.2
Martin, R.L.3
Johnson, J.D.4
Shaw, M.S.5
Holian, B.L.6
-
29
-
-
77956890234
-
-
0006-3444 10.1093/biomet/57.1.97.
-
W. K. Hastings, Biometrika 0006-3444 10.1093/biomet/57.1.97 57, 97 (1970).
-
(1970)
Biometrika
, vol.57
, pp. 97
-
-
Hastings, W.K.1
-
30
-
-
0001466237
-
-
0021-9606 10.1063/1.1673047.
-
W. W. Wood, J. Chem. Phys. 0021-9606 10.1063/1.1673047 52, 729 (1970).
-
(1970)
J. Chem. Phys.
, vol.52
, pp. 729
-
-
Wood, W.W.1
-
31
-
-
65149102371
-
-
The N ln Vi term arises from the use of scaled coordinates.
-
The N ln Vi term arises from the use of scaled coordinates.
-
-
-
-
33
-
-
65149097223
-
-
Due to the absence of strongly attractive forces, as well as the high temperature and pressure of the system, the equilibration periods required were much shorter than for, say, water at STP.
-
Due to the absence of strongly attractive forces, as well as the high temperature and pressure of the system, the equilibration periods required were much shorter than for, say, water at STP.
-
-
-
-
34
-
-
65149085095
-
-
in, edited by M. D. Furnish (American Institute of Physics, New York), Vol.,.
-
M. S. Shaw and C. Tymczak, in Shock Compression of Condensed Matter, edited by, M. D. Furnish, (American Institute of Physics, New York, 2005), Vol. 845, p. 179.
-
(2005)
Shock Compression of Condensed Matter
, vol.845
, pp. 179
-
-
Shaw, M.S.1
Tymczak, C.2
-
35
-
-
36849116054
-
-
0021-9606 10.1063/1.1701695.
-
I. R. McDonald and K. Singer, J. Chem. Phys. 0021-9606 10.1063/1.1701695 47, 4766 (1967).
-
(1967)
J. Chem. Phys.
, vol.47
, pp. 4766
-
-
McDonald, I.R.1
Singer, K.2
-
36
-
-
65149095060
-
-
This is the case only for the isothermal-isobaric ensemble. In the canonical ensemble, for instance, it would be the δU-P distribution.
-
This is the case only for the isothermal-isobaric ensemble. In the canonical ensemble, for instance, it would be the δU-P distribution.
-
-
-
-
37
-
-
49349107662
-
-
1089-5639 10.1021/jp8013404, ();, Science 0036-8075 10.1126/science. 1080683 299, 525 (2003).
-
E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, J. Phys. Chem. A 1089-5639 10.1021/jp8013404 112, 6811 (2008); H. Rabitz, Science 0036-8075 10.1126/science.1080683 299, 525 (2003).
-
(2008)
J. Phys. Chem. A
, vol.112
, pp. 6811
-
-
Carroll, E.C.1
White, J.L.2
Florean, A.C.3
Bucksbaum, P.H.4
Sension, R.J.5
Rabitz, H.6
-
38
-
-
0030543757
-
-
0301-0104 10.1016/0301-0104(95)00357-6, ();, Mol. Phys. 0026-8976 10.1080/00268970110056889 99, 1503 (2001).
-
A. K. Soper, Chem. Phys. 0301-0104 10.1016/0301-0104(95)00357-6 202, 295 (1996); A. K. Soper, Mol. Phys. 0026-8976 10.1080/00268970110056889 99, 1503 (2001).
-
(1996)
Chem. Phys.
, vol.202
, pp. 295
-
-
Soper, A.K.1
Soper, A.K.2
-
39
-
-
5244304444
-
-
0021-9991 10.1016/0021-9991(76)90078-4.
-
C. H. Bennett, J. Comput. Phys. 0021-9991 10.1016/0021-9991(76)90078-4 22, 245 (1976).
-
(1976)
J. Comput. Phys.
, vol.22
, pp. 245
-
-
Bennett, C.H.1
|