-
1
-
-
0001184653
-
-
j. g. Smith, The information capacity of amplitude- and variance-constrained scalar Gaussian channels, Inform. Control, 18, pp. 203-219, 1971.
-
j. g. Smith, "The information capacity of amplitude- and variance-constrained scalar Gaussian channels," Inform. Control, vol. 18, pp. 203-219, 1971.
-
-
-
-
2
-
-
17644366813
-
-
d. Guo, s. Shamai (Shitz), and s. Verdú, Mutual informaiton and minimum mean-square error in Gaussian channels, IEEE Trans. Inform. Theory, 51, no. 4, pp. 1261-1282, April 2005.
-
d. Guo, s. Shamai (Shitz), and s. Verdú, "Mutual informaiton and minimum mean-square error in Gaussian channels," IEEE Trans. Inform. Theory, vol. 51, no. 4, pp. 1261-1282, April 2005.
-
-
-
-
3
-
-
64549162944
-
-
g. Casella and w. e. Strawderman, Estimating a bounded normal mean, Ann. Statist., 9, no. 4, pp. 870-878, 1981.
-
g. Casella and w. e. Strawderman, "Estimating a bounded normal mean," Ann. Statist., vol. 9, no. 4, pp. 870-878, 1981.
-
-
-
-
4
-
-
0001073033
-
Minimax estimation of the mean of a normal distribution when the parameter space is restricted
-
p. j. Bickel
-
p. j. Bickel, "Minimax estimation of the mean of a normal distribution when the parameter space is restricted," Ann. Statist., vol. 9, no. 6, pp. 1301-1309, 1981.
-
(1981)
Ann. Statist
, vol.9
, Issue.6
, pp. 1301-1309
-
-
-
5
-
-
64549111839
-
-
i. a. Ibragimov and r. z. Has'minskii, On nonparametric estimation of the value of a linear functional in Gaussian white noise, Theory Probab. Appl., 29, no. 1, pp. 18-32, 1984.
-
i. a. Ibragimov and r. z. Has'minskii, "On nonparametric estimation of the value of a linear functional in Gaussian white noise," Theory Probab. Appl., vol. 29, no. 1, pp. 18-32, 1984.
-
-
-
-
6
-
-
64549126611
-
-
d. l. Donoho, r. c. Liu, and b. MacGibbon, Minimax risk over hyperrectangles, and implications, Ann. Statist., 18, no. 3, pp. 1416-1437, 1990.
-
d. l. Donoho, r. c. Liu, and b. MacGibbon, "Minimax risk over hyperrectangles, and implications," Ann. Statist., vol. 18, no. 3, pp. 1416-1437, 1990.
-
-
-
-
7
-
-
64549124032
-
-
i. m. Johnstone, Function estimation and Gaussian sequence models, 2002, available [Online] at http://www-stat.stanford.edu/~imj/ baseb.pdf.
-
i. m. Johnstone, "Function estimation and Gaussian sequence models," 2002, available [Online] at http://www-stat.stanford.edu/~imj/ baseb.pdf.
-
-
-
-
8
-
-
84972513554
-
On general minimax theorems
-
m. Sion, "On general minimax theorems," Pacific J. Math., vol. 8, pp. 171-176, 1958.
-
(1958)
Pacific J. Math
, vol.8
, pp. 171-176
-
-
Sion, M.1
-
9
-
-
64549126155
-
-
m. n. Ghosh, Uniform approximation of minimax point estimates, Ann. Statist., 35, pp. 1031-1047, 1964.
-
m. n. Ghosh, "Uniform approximation of minimax point estimates," Ann. Statist., vol. 35, pp. 1031-1047, 1964.
-
-
-
-
10
-
-
64549092506
-
Global optimization decomposition methods for bounded parameter minimax risk evaluation
-
January
-
e. Gourdin, b. Jaumard, and b. MacGibbon, "Global optimization decomposition methods for bounded parameter minimax risk evaluation," SIAM J. Sci. Comput., vol. 15, no. 1, pp. 16-35, January 1994.
-
(1994)
SIAM J. Sci. Comput
, vol.15
, Issue.1
, pp. 16-35
-
-
Gourdin, E.1
Jaumard, B.2
MacGibbon, B.3
-
11
-
-
64549125274
-
-
m. s. Pinsker, Optimal filtering of square integrable signals in Gaussian white noise, Problems Inform. Transmission, 16, pp. 120-123, 1980.
-
m. s. Pinsker, "Optimal filtering of square integrable signals in Gaussian white noise," Problems Inform. Transmission, vol. 16, pp. 120-123, 1980.
-
-
-
-
12
-
-
64549139031
-
-
h. v. Poor, An Introduction to Signal Detection and Estimation, 2nd ed. Berlin: Springer, 1994.
-
h. v. Poor, An Introduction to Signal Detection and Estimation, 2nd ed. Berlin: Springer, 1994.
-
-
-
-
13
-
-
0043001773
-
-
t. m. Cover and j. a. Thomas, 2nd ed. New York: Wiley
-
t. m. Cover and j. a. Thomas, Elements of Information Theory, 2nd ed. New York: Wiley, 2006.
-
(2006)
Elements of Information Theory
-
-
-
14
-
-
64549145573
-
-
n. Sharma and s. Shamai (Shitz), Characterization of the discrete-capacity achieving distribution when mass points increases, in Proc. Int. Symp. on Information Theory and Its Applications (ISITA), Auckland, New Zealand, December 2008, to appear.
-
n. Sharma and s. Shamai (Shitz), "Characterization of the discrete-capacity achieving distribution when mass points increases," in Proc. Int. Symp. on Information Theory and Its Applications (ISITA), Auckland, New Zealand, December 2008, to appear.
-
-
-
-
15
-
-
0027632549
-
-
l. d. Brown and r. c. Liu, Bounds on the Bayes and minimax risk for signal parameter estimation, IEEE Trans. Inform. Theory, 39, no. 4, pp. 1386-1394, July 1993.
-
l. d. Brown and r. c. Liu, "Bounds on the Bayes and minimax risk for signal parameter estimation," IEEE Trans. Inform. Theory, vol. 39, no. 4, pp. 1386-1394, July 1993.
-
-
-
-
16
-
-
20544468751
-
-
t. h. Chan, s. Hranilovic, and f. r. Kschischang, Capacityachieving probability measure for conditionally Gaussian channels with bounded inputs, IEEE Trans. Inform. Theory, 51, no. 6, pp. 2073-2088, June 2005.
-
t. h. Chan, s. Hranilovic, and f. r. Kschischang, "Capacityachieving probability measure for conditionally Gaussian channels with bounded inputs," IEEE Trans. Inform. Theory, vol. 51, no. 6, pp. 2073-2088, June 2005.
-
-
-
|