메뉴 건너뛰기




Volumn 42, Issue 4, 2009, Pages

A generalized expansion method for nonlinear wave equations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 64549129883     PISSN: 17518113     EISSN: 17518121     Source Type: Journal    
DOI: 10.1088/1751-8113/42/4/045207     Document Type: Article
Times cited : (7)

References (23)
  • 2
    • 32644432015 scopus 로고    scopus 로고
    • A new elliptic equation rational expansion method and its application to the shallow long wave approximate equations
    • Chen Y and Wang Q 2006 A new elliptic equation rational expansion method and its application to the shallow long wave approximate equations Appl. Math. Comput. 173 1163-82
    • (2006) Appl. Math. Comput. , vol.173 , Issue.2 , pp. 1163-1182
    • Chen, Y.1    Wang, Q.2
  • 3
    • 41149116838 scopus 로고    scopus 로고
    • New generalized Jacobi elliptic function expansion method
    • El-Sabbagh M F and Ali A T 2008 New generalized Jacobi elliptic function expansion method Commun. Nonlinear Sci. Numer. Simul. 13 1758-66
    • (2008) Commun. Nonlinear Sci. Numer. Simul. , vol.13 , Issue.9 , pp. 1758-1766
    • El-Sabbagh, M.F.1    Ali, A.T.2
  • 4
    • 0037118984 scopus 로고    scopus 로고
    • Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method
    • Fan E 2002 Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method J. Phys. A: Math. Gen. 35 6853-72
    • (2002) J. Phys. A: Math. Gen. , vol.35 , Issue.32 , pp. 6853-6872
    • Fan, E.1
  • 6
    • 33745177020 scopus 로고    scopus 로고
    • Exp-function method for nonlinear wave equations
    • He J H and Wu X H 2006 Exp-function method for nonlinear wave equations Chaos Solitons Fractals 30 700-8
    • (2006) Chaos Solitons Fractals , vol.30 , Issue.3 , pp. 700-708
    • He, J.H.1    Wu, X.H.2
  • 7
    • 0041851450 scopus 로고    scopus 로고
    • The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation
    • Lai S and Wu Y H 2003 The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation Discrete Continuous Dyn. Syst. Ser. B 3 401-8
    • (2003) Discrete Continuous Dyn. Syst. Ser. , vol.3 , pp. 401-408
    • Lai, S.1    Wu, Y.H.2
  • 8
    • 24944572680 scopus 로고    scopus 로고
    • The global solution of an initial boundary value problem for the damped Boussinesq equation
    • Lai S, Wu Y H and Yang X 2004 The global solution of an initial boundary value problem for the damped Boussinesq equation Commun. Pure Appl. Anal. 3 319-28
    • (2004) Commun. Pure Appl. Anal. , vol.3 , pp. 319-328
    • Lai Wu S, Y.H.1    Yang, X.2
  • 9
    • 37249063037 scopus 로고    scopus 로고
    • On exact travelling wave solutions for two types of nonlinear K(n, n) equations and a generalized KP equation
    • Lai S, Wu Y H and Wiwatanapataphee B 2008 On exact travelling wave solutions for two types of nonlinear K(n, n) equations and a generalized KP equation J. Comput. Appl. Math. 212 291-9
    • (2008) J. Comput. Appl. Math. , vol.212 , Issue.2 , pp. 291-299
    • Lai Wu S, Y.H.1    Wiwatanapataphee, B.2
  • 10
    • 44149116270 scopus 로고    scopus 로고
    • Some physical structures for the (2 + 1)-dimensional Boussinesq water equation with positive and negative exponents
    • Lai S, Wu Y H and Zhou Y 2008 Some physical structures for the (2 + 1)-dimensional Boussinesq water equation with positive and negative exponents Comput. Math. Appl. 56 339-45
    • (2008) Comput. Math. Appl. , vol.56 , Issue.2 , pp. 339-345
    • Lai Wu S, Y.H.1    Zhou, Y.2
  • 11
    • 58149347781 scopus 로고    scopus 로고
    • Linear B-spline finite element method for the improved Boussinesq equation
    • Lin Q, Wu Y H, Loxton R and Lai S 2008 Linear B-spline finite element method for the improved Boussinesq equation J. Comput. Appl. Math. (doi:10.1016/j.cam.2008.05.049)
    • (2008) J. Comput. Appl. Math.
    • Lin, Q.1    Wu, Y.H.2    Loxton, R.3    Lai, S.4
  • 12
    • 0035828886 scopus 로고    scopus 로고
    • Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations
    • Liu S, Fu Z, Liu S and Zhao Q 2001 Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations Phys. Lett. A 289 69-74
    • (2001) Phys. Lett. , vol.289 , Issue.1-2 , pp. 69-74
    • Liu Fu Liu Z S, S.1    Zhao, Q.2
  • 13
    • 0346094010 scopus 로고    scopus 로고
    • Nonlinear transformation and Jacobi elliptic function solutions of nonlinear equations
    • Liu J, Yang L and Yang K 2004 Nonlinear transformation and Jacobi elliptic function solutions of nonlinear equations Chaos Solitons Fractals 20 1157-64
    • (2004) Chaos Solitons Fractals , vol.20 , Issue.5 , pp. 1157-1164
    • Liu Yang J, L.1    Yang, K.2
  • 14
    • 67349150072 scopus 로고    scopus 로고
    • An auxiliary equation technique and exact solutions for a nonlinear Klein-Gordon equation
    • Lv X, Lai S and Wu Y H 2007 An auxiliary equation technique and exact solutions for a nonlinear Klein-Gordon equation Chaos Solitons Fractals (doi:10.1016/j.chaos.2007.11.013)
    • (2007) Chaos Solitons Fractals
    • Lv Lai X, S.1    Wu, Y.H.2
  • 15
    • 0004483962 scopus 로고    scopus 로고
    • The tanh method: I. Exact solutions of nonlinear evolution and wave equations
    • Malfliet W 1996 The tanh method: I. Exact solutions of nonlinear evolution and wave equations Phys. Scr. 54 563-8
    • (1996) Phys. Scr. , vol.54 , Issue.6 , pp. 563-568
    • Malfliet, W.1
  • 16
    • 1442264988 scopus 로고    scopus 로고
    • The tanh method: A tool for solving certain classes of nonlinear evolution and wave equations
    • Malfliet W 2004 The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations J. Comput. Appl. Math. 164-165 529-41
    • (2004) J. Comput. Appl. Math. , vol.164-165 , pp. 529-541
    • Malfliet, W.1
  • 17
    • 33947154208 scopus 로고    scopus 로고
    • Elliptic solutions to a generalized BBM equation
    • Nickel J 2007 Elliptic solutions to a generalized BBM equation Phys. Lett. A 364 221-6
    • (2007) Phys. Lett. , vol.364 , Issue.3-4 , pp. 221-226
    • Nickel, J.1
  • 18
    • 0037463555 scopus 로고    scopus 로고
    • A note on the Jacobi elliptic function expansion method
    • Shen S and Pan Z 2003 A note on the Jacobi elliptic function expansion method Phys. Lett. A 308 143-8
    • (2003) Phys. Lett. , vol.308 , Issue.2-3 , pp. 143-148
    • Shen, S.1    Pan, Z.2
  • 19
    • 33748146398 scopus 로고    scopus 로고
    • New hyperbolic schemes for reliable treatment of Boussinesq equation
    • Wazwaz A 2006 New hyperbolic schemes for reliable treatment of Boussinesq equation Phys. Lett. A 358 409-13
    • (2006) Phys. Lett. , vol.358 , Issue.5-6 , pp. 409-413
    • Wazwaz, A.1
  • 20
    • 34748862326 scopus 로고    scopus 로고
    • Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method
    • Wu X H and He J H 2007 Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method Comput. Math. Appl. 54 966-86
    • (2007) Comput. Math. Appl. , vol.54 , Issue.7-8 , pp. 966-986
    • Wu, X.H.1    He, J.H.2
  • 21
    • 0037458753 scopus 로고    scopus 로고
    • Jacobi elliptic function solutions of nonlinear wave equations via the new sinh-Gordon equation expansion method
    • Yan Z 2003 Jacobi elliptic function solutions of nonlinear wave equations via the new sinh-Gordon equation expansion method J. Phys. A 36 1961-72
    • (2003) J. Phys. , vol.36 , Issue.7 , pp. 1961-1972
    • Yan, Z.1
  • 22
    • 33845601704 scopus 로고    scopus 로고
    • Extended Jacobi elliptic function expansion method and its applications
    • Zhang H 2007 Extended Jacobi elliptic function expansion method and its applications Commun. Nonlinear Sci. Numer. Simul. 12 627-35
    • (2007) Commun. Nonlinear Sci. Numer. Simul. , vol.12 , Issue.5 , pp. 627-635
    • Zhang, H.1
  • 23
    • 33749545792 scopus 로고    scopus 로고
    • New exact Jacobi elliptic function solutions for some nonlinear evolution equations
    • Zhang H 2007 New exact Jacobi elliptic function solutions for some nonlinear evolution equations Chaos Solitons Fractals 32 653-60
    • (2007) Chaos Solitons Fractals , vol.32 , Issue.2 , pp. 653-660
    • Zhang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.