-
1
-
-
0034340694
-
The non-commutative Weil algebra
-
math.DG/9903052
-
Alekseev A. Meinrenken E. The non-commutative Weil algebra Invent. Math. 139 1 2000 135-172 math.DG/9903052
-
(2000)
Invent. Math.
, vol.139
, Issue.1
, pp. 135-172
-
-
Alekseev, A.1
Meinrenken, E.2
-
3
-
-
46649114832
-
On the globalization of Kontsevich's star product and the perturbative Poisson sigma model
-
hep-th/0111028
-
A.S. Cattaneo, G. Felder, On the globalization of Kontsevich's star product and the perturbative Poisson sigma model, hep-th/0111028.
-
-
-
Cattaneo, A.S.1
Felder, G.2
-
4
-
-
0036872347
-
From local to global deformation quantization of Poisson manifolds
-
math.QA/0012228
-
Cattaneo A.S. Felder G. Tomassini L. From local to global deformation quantization of Poisson manifolds Duke Math. J. 115 2 2002 329-352 math.QA/0012228
-
(2002)
Duke Math. J.
, vol.115
, Issue.2
, pp. 329-352
-
-
Cattaneo, A.S.1
Felder, G.2
Tomassini, L.3
-
5
-
-
0037175457
-
On the Fedosov deformation quantization beyond the regular Poisson manifolds
-
Dolgushev V.A. Isaev A.P. Lyakhovich S.L. Sharapov A.A. On the Fedosov deformation quantization beyond the regular Poisson manifolds Nucl. Phys. B 645 3 2002 457-476
-
(2002)
Nucl. Phys. B
, vol.645
, Issue.3
, pp. 457-476
-
-
Dolgushev, V.A.1
Isaev, A.P.2
Lyakhovich, S.L.3
Sharapov, A.A.4
-
6
-
-
0040144116
-
The differential geometry of Fedosov's quantization, Lie theory and geometry
-
Birkhauser, Boston, MA hep-th/9311094
-
C. Emmrich, A. Weinstein, The differential geometry of Fedosov's quantization, Lie theory and geometry, Progr. Math., Vol. 123, Birkhauser, Boston, MA, 1994, 217-239; hep-th/9311094.
-
(1994)
Progr. Math.
, vol.123
, pp. 217-239
-
-
Emmrich, C.1
Weinstein, A.2
-
7
-
-
13844270353
-
Quantization of Alekseev-Meinrenken dynamical r-matrices
-
math.QA/0302067
-
B. Enriquez, P. Etingof, Quantization of Alekseev-Meinrenken dynamical r-matrices, math.QA/0302067.
-
-
-
Enriquez, B.1
Etingof, P.2
-
8
-
-
6444235012
-
Quantization of classical dynamical r-matrices with non-abelian base
-
math. QA/0311224
-
B. Enriquez, P. Etingof, Quantization of classical dynamical r-matrices with non-abelian base, math. QA/0311224.
-
-
-
Enriquez, B.1
Etingof, P.2
-
9
-
-
0035535891
-
Vertex-IRF transformations and quantization of dynamical r-matrices
-
Etingof P. Nikshych D. Vertex-IRF transformations and quantization of dynamical r-matrices Math. Res. Lett. 8 3 2001 331-346
-
(2001)
Math. Res. Lett.
, vol.8
, Issue.3
, pp. 331-346
-
-
Etingof, P.1
Nikshych, D.2
-
10
-
-
0032023960
-
Geometry and classification of solutions of the classical dynamical Yang-Baxter equation
-
Etingof P. Varchenko A. Geometry and classification of solutions of the classical dynamical Yang-Baxter equation Comm. Math. Phys. 192 1 1998 77-120
-
(1998)
Comm. Math. Phys.
, vol.192
, Issue.1
, pp. 77-120
-
-
Etingof, P.1
Varchenko, A.2
-
11
-
-
84972506966
-
A simple geometrical construction of deformation quantization
-
Fedosov B.V. A simple geometrical construction of deformation quantization J. Differential Geom. 40 1994 213-238
-
(1994)
J. Differential Geom.
, vol.40
, pp. 213-238
-
-
Fedosov, B.V.1
-
12
-
-
0001525936
-
Fedosov manifolds
-
dg-ga/9707024
-
Gelfand I. Retakh V. Shubin M. Fedosov manifolds Adv. Math. 136 1 1998 104-140 dg-ga/9707024
-
(1998)
Adv. Math.
, vol.136
, Issue.1
, pp. 104-140
-
-
Gelfand, I.1
Retakh, V.2
Shubin, M.3
-
13
-
-
21844497742
-
L-operator for Belavin's R-matrix acting on the space of theta functions
-
Hasegawa K. L-operator for Belavin's R-matrix acting on the space of theta functions J. Math. Phys. 35 1994 6158-6171
-
(1994)
J. Math. Phys.
, vol.35
, pp. 6158-6171
-
-
Hasegawa, K.1
-
14
-
-
0002039359
-
Homotopy Lie algebras, I.M. Gelfand Seminar
-
Hinich V. Schechtman V. Homotopy Lie algebras, I.M. Gelfand Seminar Adv. Sov. Math. 16 2 1993 1-28
-
(1993)
Adv. Sov. Math.
, vol.16
, Issue.2
, pp. 1-28
-
-
Hinich, V.1
Schechtman, V.2
-
15
-
-
0004338264
-
Deformation quantization of Poisson manifolds
-
I, q-alg/9709040
-
M. Kontsevich, Deformation quantization of Poisson manifolds, I, q-alg/9709040.
-
-
-
Kontsevich, M.1
-
16
-
-
0042704087
-
Deformation quantization of algebraic varieties
-
math.QA/0106006
-
Kontsevich M. Deformation quantization of algebraic varieties Lett. Math. Phys. 56 3 2001 271-294 math.QA/0106006
-
(2001)
Lett. Math. Phys.
, vol.56
, Issue.3
, pp. 271-294
-
-
Kontsevich, M.1
-
17
-
-
6444229138
-
An application of formality theorem to a quantization of dynamical r-matrices
-
T. Mochizuki, An application of formality theorem to a quantization of dynamical r-matrices, http://www.math.ias.edu/takuro/dyb.ps
-
-
-
Mochizuki, T.1
-
18
-
-
0001531057
-
Rational homotopy theory
-
Quillen D. Rational homotopy theory Ann. Math. 90 2 1969 205-295
-
(1969)
Ann. Math.
, vol.90
, Issue.2
, pp. 205-295
-
-
Quillen, D.1
-
19
-
-
0012290118
-
Another proof of M. Kontsevich formality theorem
-
math.QA/9803025
-
D. Tamarkin, Another proof of M. Kontsevich formality theorem, math.QA/9803025.
-
-
-
Tamarkin, D.1
-
20
-
-
0036497108
-
Triangular dynamical r-matrices and quantization
-
math.QA/0005006
-
Xu P. Triangular dynamical r-matrices and quantization Adv. Math. 166 1 2002 1-49 math.QA/0005006
-
(2002)
Adv. Math.
, vol.166
, Issue.1
, pp. 1-49
-
-
Xu, P.1
-
21
-
-
0036011684
-
Quantum dynamical Yang-Baxter equation over a nonabelian base
-
math.QA/0104071
-
Xu P. Quantum dynamical Yang-Baxter equation over a nonabelian base Comm. Math. Phys. 226 3 2002 475-495 math.QA/0104071
-
(2002)
Comm. Math. Phys.
, vol.226
, Issue.3
, pp. 475-495
-
-
Xu, P.1
|