-
1
-
-
0001418043
-
-
Patai, S., Rappoport, Z., Eds.; Wiley & Sons: New York
-
(a) Tilley, T. D. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley & Sons: New York, 1989; pp 1415-1477.
-
(1989)
The Chemistry of Organic Silicon Compounds
, pp. 1415-1477
-
-
Tilley, T.D.1
-
2
-
-
0000829913
-
-
Patai, S., Rappoport, Z., Eds.; Wiley & Sons: New York
-
(b) Ojima, I. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley & Sons: New York, 1989; pp 1479-1526.
-
(1989)
The Chemistry of Organic Silicon Compounds
, pp. 1479-1526
-
-
Ojima, I.1
-
3
-
-
0033667320
-
-
and references therein
-
(c) Marciniec, B. Appl. Organomet. Chem. 2000, 14, 527-538 and references therein.
-
(2000)
Appl. Organomet. Chem.
, vol.14
, pp. 527-538
-
-
Marciniec, B.1
-
5
-
-
33947490919
-
-
For example, in the Chalk-Harrod mechanism, olefin inserts into the metal-hydrogen bond: (a) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 16-21. (b) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 1133-1135. In the modified Chalk-Harrod mechanism proposed by Sietz and Wrighton, olefin insens into the metal-silicon bond: (c) Scitz. F.; Wrighton, M. S. Angew. Chem., Int. Ed. Engl. 1988, 27, 289-291. (d) Duckett, S. B.; Perutz, R. N. Organometallics 1992, 11, 90-98. Furthermore, σ-bond metathesis hydrosilation mechanisms that are proposed for d° metals also occur within the first coordination sphere of the transition metal: (e) Corey, J. Y.: Zhu, X.-H. Organometallics 1992, 11, 672-683. (f) Kesti, M. R.; Waymouth, R. M. Organometallics 1992, 11, 1095-1103.
-
(1965)
J. Am. Chem. Soc.
, vol.87
, pp. 16-21
-
-
Chalk, A.J.1
Harrod, J.F.2
-
6
-
-
0000374361
-
-
For example, in the Chalk-Harrod mechanism, olefin inserts into the metal-hydrogen bond: (a) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 16-21. (b) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 1133-1135. In the modified Chalk-Harrod mechanism proposed by Sietz and Wrighton, olefin insens into the metal-silicon bond: (c) Scitz. F.; Wrighton, M. S. Angew. Chem., Int. Ed. Engl. 1988, 27, 289-291. (d) Duckett, S. B.; Perutz, R. N. Organometallics 1992, 11, 90-98. Furthermore, σ-bond metathesis hydrosilation mechanisms that are proposed for d° metals also occur within the first coordination sphere of the transition metal: (e) Corey, J. Y.: Zhu, X.-H. Organometallics 1992, 11, 672-683. (f) Kesti, M. R.; Waymouth, R. M. Organometallics 1992, 11, 1095-1103.
-
(1965)
J. Am. Chem. Soc.
, vol.87
, pp. 1133-1135
-
-
Chalk, A.J.1
Harrod, J.F.2
-
7
-
-
84990113688
-
-
For example, in the Chalk-Harrod mechanism, olefin inserts into the metal-hydrogen bond: (a) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 16-21. (b) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 1133-1135. In the modified Chalk-Harrod mechanism proposed by Sietz and Wrighton, olefin insens into the metal-silicon bond: (c) Scitz. F.; Wrighton, M. S. Angew. Chem., Int. Ed. Engl. 1988, 27, 289-291. (d) Duckett, S. B.; Perutz, R. N. Organometallics 1992, 11, 90-98. Furthermore, σ-bond metathesis hydrosilation mechanisms that are proposed for d° metals also occur within the first coordination sphere of the transition metal: (e) Corey, J. Y.: Zhu, X.-H. Organometallics 1992, 11, 672-683. (f) Kesti, M. R.; Waymouth, R. M. Organometallics 1992, 11, 1095-1103.
-
(1988)
Angew. Chem., Int. Ed. Engl.
, vol.27
, pp. 289-291
-
-
Scitz, F.1
Wrighton, M.S.2
-
8
-
-
0002814688
-
-
For example, in the Chalk-Harrod mechanism, olefin inserts into the metal-hydrogen bond: (a) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 16-21. (b) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 1133-1135. In the modified Chalk-Harrod mechanism proposed by Sietz and Wrighton, olefin insens into the metal-silicon bond: (c) Scitz. F.; Wrighton, M. S. Angew. Chem., Int. Ed. Engl. 1988, 27, 289-291. (d) Duckett, S. B.; Perutz, R. N. Organometallics 1992, 11, 90-98. Furthermore, σ-bond metathesis hydrosilation mechanisms that are proposed for d° metals also occur within the first coordination sphere of the transition metal: (e) Corey, J. Y.: Zhu, X.-H. Organometallics 1992, 11, 672-683. (f) Kesti, M. R.; Waymouth, R. M. Organometallics 1992, 11, 1095-1103.
-
(1992)
Organometallics
, vol.11
, pp. 90-98
-
-
Duckett, S.B.1
Perutz, R.N.2
-
9
-
-
12944284577
-
-
For example, in the Chalk-Harrod mechanism, olefin inserts into the metal-hydrogen bond: (a) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 16-21. (b) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 1133-1135. In the modified Chalk-Harrod mechanism proposed by Sietz and Wrighton, olefin insens into the metal-silicon bond: (c) Scitz. F.; Wrighton, M. S. Angew. Chem., Int. Ed. Engl. 1988, 27, 289-291. (d) Duckett, S. B.; Perutz, R. N. Organometallics 1992, 11, 90-98. Furthermore, σ-bond metathesis hydrosilation mechanisms that are proposed for d° metals also occur within the first coordination sphere of the transition metal: (e) Corey, J. Y.: Zhu, X.-H. Organometallics 1992, 11, 672-683. (f) Kesti, M. R.; Waymouth, R. M. Organometallics 1992, 11, 1095-1103.
-
(1992)
Organometallics
, vol.11
, pp. 672-683
-
-
Corey, J.Y.1
Zhu, X.-H.2
-
10
-
-
0001604539
-
-
For example, in the Chalk-Harrod mechanism, olefin inserts into the metal-hydrogen bond: (a) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 16-21. (b) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 1133-1135. In the modified Chalk-Harrod mechanism proposed by Sietz and Wrighton, olefin insens into the metal-silicon bond: (c) Scitz. F.; Wrighton, M. S. Angew. Chem., Int. Ed. Engl. 1988, 27, 289-291. (d) Duckett, S. B.; Perutz, R. N. Organometallics 1992, 11, 90-98. Furthermore, σ-bond metathesis hydrosilation mechanisms that are proposed for d° metals also occur within the first coordination sphere of the transition metal: (e) Corey, J. Y.: Zhu, X.-H. Organometallics 1992, 11, 672-683. (f) Kesti, M. R.; Waymouth, R. M. Organometallics 1992, 11, 1095-1103.
-
(1992)
Organometallics
, vol.11
, pp. 1095-1103
-
-
Kesti, M.R.1
Waymouth, R.M.2
-
12
-
-
1642367216
-
-
For theoretical investigations on other hydrosilation catalysts, see: (a) Sakaki, S.; Takayama, T.; Sumimoto, M.; Sugimoto, M. J. Am. Chem. Soc. 2004, 126, 3332-3348. (b) Chung, L. A.; Wu, Y.; Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2003, 125, 11578-11582. (c) Sakaki, S.; Sumimoto, M.; Fukuhara, M.: Sugimoto, M.; Fujimoto, H.; Matsuzaki, S. Organometallics 2002, 21, 3788-3802 and references therein.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 3332-3348
-
-
Sakaki, S.1
Takayama, T.2
Sumimoto, M.3
Sugimoto, M.4
-
13
-
-
0141757441
-
-
For theoretical investigations on other hydrosilation catalysts, see: (a) Sakaki, S.; Takayama, T.; Sumimoto, M.; Sugimoto, M. J. Am. Chem. Soc. 2004, 126, 3332-3348. (b) Chung, L. A.; Wu, Y.; Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2003, 125, 11578-11582. (c) Sakaki, S.; Sumimoto, M.; Fukuhara, M.: Sugimoto, M.; Fujimoto, H.; Matsuzaki, S. Organometallics 2002, 21, 3788-3802 and references therein.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 11578-11582
-
-
Chung, L.A.1
Wu, Y.2
Trost, B.M.3
Ball, Z.T.4
-
14
-
-
0038682383
-
-
and references therein
-
For theoretical investigations on other hydrosilation catalysts, see: (a) Sakaki, S.; Takayama, T.; Sumimoto, M.; Sugimoto, M. J. Am. Chem. Soc. 2004, 126, 3332-3348. (b) Chung, L. A.; Wu, Y.; Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2003, 125, 11578-11582. (c) Sakaki, S.; Sumimoto, M.; Fukuhara, M.: Sugimoto, M.; Fujimoto, H.; Matsuzaki, S. Organometallics 2002, 21, 3788-3802 and references therein.
-
(2002)
Organometallics
, vol.21
, pp. 3788-3802
-
-
Sakaki, S.1
Sumimoto, M.2
Fukuhara, M.3
Sugimoto, M.4
Fujimoto, H.5
Matsuzaki, S.6
-
15
-
-
0141704726
-
-
Gaussian, Inc.: Pittsburgh, PA
-
All calculations were conducted using the Gaussian03 suite of programs: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.: Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada. M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.: Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.: Al-Laham. M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.: Gonzalez, C.; Pople, J. A. Gaussian 03, revision B.4; Gaussian, Inc.: Pittsburgh, PA, 2003.
-
(2003)
Gaussian 03, Revision B.4
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Montgomery Jr., J.A.7
Vreven, T.8
Kudin, K.N.9
Burant, J.C.10
Millam, J.M.11
Iyengar, S.S.12
Tomasi, J.13
Barone, V.14
Mennucci, B.15
Cossi, M.16
Scalmani, G.17
Rega, N.18
Petersson, G.A.19
Nakatsuji, H.20
Hada, M.21
Ehara, M.22
Toyota, K.23
Fukuda, R.24
Hasegawa, J.25
Ishida, M.26
Nakajima, T.27
Honda, Y.28
Kitao, O.29
Nakai, H.30
Klene, M.31
Li, X.32
Knox, J.E.33
Hratchian, H.P.34
Cross, J.B.35
Adamo, C.36
Jaramillo, J.37
Gomperts, R.38
Stratmann, R.E.39
Yazyev, O.40
Austin, A.J.41
Cammi, R.42
Pomelli, C.43
Ochterski, J.W.44
Ayala, P.Y.45
Morokuma, K.46
Voth, G.A.47
Salvador, P.48
Dannenberg, J.J.49
Zakrzewski, V.G.50
Dapprich, S.51
Daniels, A.D.52
Strain, M.C.53
Farkas, O.54
Malick, D.K.55
Rabuck, A.D.56
Raghavachari, K.57
Foresman, J.B.58
Ortiz, J.V.59
Cui, Q.60
Baboul, A.G.61
Clifford, S.62
Cioslowski, J.63
Stefanov, B.B.64
Liu, G.65
Liashenko, A.66
Piskorz, P.67
Komaromi, I.68
Martin, R.L.69
Fox, D.J.70
Keith, T.71
Al-Laham, M.A.72
Peng, C.Y.73
Nanayakkara, A.74
Challacombe, M.75
Gill, P.M.W.76
Johnson, B.77
Chen, W.78
Wong, M.W.79
Gonzalez, C.80
Pople, J.A.81
more..
-
16
-
-
6444219835
-
-
note
-
4, respectively, to save computational time.
-
-
-
-
17
-
-
6444238436
-
-
note
-
All relative free energies were calculated in the gas phase with complex 1 and separated ethylene set to 0.0 kcal/mol unless otherwise noted.
-
-
-
-
18
-
-
6444228485
-
-
note
-
CPCM calculations employing dichloromethane as a solvent. See the Supporting Information for more details.
-
-
-
-
19
-
-
6444221902
-
-
note
-
See Scheme S2 in the Supporting Information for more details.
-
-
-
-
20
-
-
6444223448
-
-
note
-
Separate Chalk-Harrod and modified Chalk-Harrod mechanisms that involve σ-bond metathesis steps that couple C-H and C-Si bond formation with Si-H oxidation were also identified; these pathways demonstrated even higher overall barriers to hydrosilation and are illustrated in the Supporting information.
-
-
-
-
21
-
-
6444224828
-
-
note
-
See Scheme S9 in the Supporting Information for more details.
-
-
-
|