-
1
-
-
0024088955
-
Celluar neural networks: theory and applications
-
Chua L., and Yang L. Celluar neural networks: theory and applications. IEEE Trans Circ Syst I 35 (1998) 1257-1290
-
(1998)
IEEE Trans Circ Syst I
, vol.35
, pp. 1257-1290
-
-
Chua, L.1
Yang, L.2
-
2
-
-
9644302419
-
Exponential synchronizations of a class of chaotic neural networks
-
Chen C.J., Liao T.L., and Hwang C.C. Exponential synchronizations of a class of chaotic neural networks. Chaos, Solitons & Fractals 24 (2005) 197-206
-
(2005)
Chaos, Solitons & Fractals
, vol.24
, pp. 197-206
-
-
Chen, C.J.1
Liao, T.L.2
Hwang, C.C.3
-
3
-
-
31444445200
-
Condition for globe asymptotic stability of delayed neural networks
-
Singh V., and Simplified L.M.I. Condition for globe asymptotic stability of delayed neural networks. Chaos, Solitons & Fractals 29 (2006) 470-473
-
(2006)
Chaos, Solitons & Fractals
, vol.29
, pp. 470-473
-
-
Singh, V.1
Simplified, L.M.I.2
-
4
-
-
33745186884
-
On global stability criterion for neural networks with discrete and distributed delays
-
Park Ju.H. On global stability criterion for neural networks with discrete and distributed delays. Chaos, Solitons & Fractals 30 (2006) 897-902
-
(2006)
Chaos, Solitons & Fractals
, vol.30
, pp. 897-902
-
-
Park, Ju.H.1
-
5
-
-
0034849714
-
Global exponential stability of delayed Hopfield neural networks
-
Chen T. Global exponential stability of delayed Hopfield neural networks. Neural Networks 14 (2001) 977-980
-
(2001)
Neural Networks
, vol.14
, pp. 977-980
-
-
Chen, T.1
-
6
-
-
1942519336
-
Some sufficient conditions for global exponential stability of delayed Hopfield neural networks
-
Lu H., Chung F.L., and He Z. Some sufficient conditions for global exponential stability of delayed Hopfield neural networks. Neural Networks 17 (2004) 537-544
-
(2004)
Neural Networks
, vol.17
, pp. 537-544
-
-
Lu, H.1
Chung, F.L.2
He, Z.3
-
7
-
-
0036647791
-
An estimation of upperbound of delays for global asymptoticstability of delayed Hopfield neural networks
-
Chen A., Cao J., and Huang L. An estimation of upperbound of delays for global asymptoticstability of delayed Hopfield neural networks. IEEE Trans Circuits Syst I: Fundam Theory Appl 49 7 (2002) 1028-1032
-
(2002)
IEEE Trans Circuits Syst I: Fundam Theory Appl
, vol.49
, Issue.7
, pp. 1028-1032
-
-
Chen, A.1
Cao, J.2
Huang, L.3
-
8
-
-
0038344694
-
Global asymptotic stability of high-order Hopfield type neural networks with time delays
-
Xu B., Liu X., and Liao X. Global asymptotic stability of high-order Hopfield type neural networks with time delays. Comput Math 45 (2003) 1729-1737
-
(2003)
Comput Math
, vol.45
, pp. 1729-1737
-
-
Xu, B.1
Liu, X.2
Liao, X.3
-
9
-
-
0141796611
-
Global stability analysis in Hopfield neural networks
-
Zhang J. Global stability analysis in Hopfield neural networks. Appl Math Lett 16 (2003) 925-931
-
(2003)
Appl Math Lett
, vol.16
, pp. 925-931
-
-
Zhang, J.1
-
10
-
-
0347511634
-
Global asymptotic stability of Hopfield neural networks involving distributed delays
-
Zhao H. Global asymptotic stability of Hopfield neural networks involving distributed delays. Neural Networks 17 (2004) 47-53
-
(2004)
Neural Networks
, vol.17
, pp. 47-53
-
-
Zhao, H.1
-
11
-
-
1842685901
-
New exponential stability results for delayed neural networks with time varying delays
-
Yucel E., and Arik S. New exponential stability results for delayed neural networks with time varying delays. Physica D 191 (2004) 314-322
-
(2004)
Physica D
, vol.191
, pp. 314-322
-
-
Yucel, E.1
Arik, S.2
-
12
-
-
13444256385
-
A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach
-
Cao J., and Ho D.W.C. A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach. Chaos, Solitons & Fractals 24 (2005) 1317-1329
-
(2005)
Chaos, Solitons & Fractals
, vol.24
, pp. 1317-1329
-
-
Cao, J.1
Ho, D.W.C.2
-
13
-
-
14644434391
-
Global asymptotic robust stability of recurrent neural networks with time delays
-
Cao J., and Wang J. Global asymptotic robust stability of recurrent neural networks with time delays. IEEE Trans Circ Syst I: Fundam Theory Appl 52 2 (2005) 417-426
-
(2005)
IEEE Trans Circ Syst I: Fundam Theory Appl
, vol.52
, Issue.2
, pp. 417-426
-
-
Cao, J.1
Wang, J.2
-
14
-
-
33749849227
-
Exponential stability in Hopfield-type neural networks with impulses
-
Monhamad S. Exponential stability in Hopfield-type neural networks with impulses. Chaos, Solitons & Fractals 32 (2007) 456-467
-
(2007)
Chaos, Solitons & Fractals
, vol.32
, pp. 456-467
-
-
Monhamad, S.1
-
15
-
-
17144447264
-
Global asymptotic stability of Hopfield neural networks with transmission delays
-
Zhang Q., Wei X., and Xu J. Global asymptotic stability of Hopfield neural networks with transmission delays. Phys Lett A 318 (2003) 399-405
-
(2003)
Phys Lett A
, vol.318
, pp. 399-405
-
-
Zhang, Q.1
Wei, X.2
Xu, J.3
-
16
-
-
6344254943
-
Delay-dependent exponential stability of cellular neural networks with time-varying delays
-
Zhang Q., Wei X., and Xu J. Delay-dependent exponential stability of cellular neural networks with time-varying delays. Chaos, Solitons & Fractals 23 (2005) 1363-1369
-
(2005)
Chaos, Solitons & Fractals
, vol.23
, pp. 1363-1369
-
-
Zhang, Q.1
Wei, X.2
Xu, J.3
-
17
-
-
0000791959
-
Globe stability and local stability of Hopfield neural networks with delays
-
He H., Michel A.N., and wang K. Globe stability and local stability of Hopfield neural networks with delays. Phys Rev E 50 (1994) 4206-4213
-
(1994)
Phys Rev E
, vol.50
, pp. 4206-4213
-
-
He, H.1
Michel, A.N.2
wang, K.3
-
18
-
-
22244437256
-
Novel globe asymptotic stability criteria for delayed cellular neural networks
-
Xu S., Lam J., Ho D.W.C., and Zou Y. Novel globe asymptotic stability criteria for delayed cellular neural networks. IEEE Trans Circ Syst II: Analog Digit Signal Process l52 6 (2005) 253-349
-
(2005)
IEEE Trans Circ Syst II: Analog Digit Signal Process
, vol.l52
, Issue.6
, pp. 253-349
-
-
Xu, S.1
Lam, J.2
Ho, D.W.C.3
Zou, Y.4
-
19
-
-
33644993005
-
A new LMI condition for delay-dependent asymptotic stability of delayed Hopfield neural networks
-
Xu S., and Lam J. A new LMI condition for delay-dependent asymptotic stability of delayed Hopfield neural networks. IEEE Trans Circ Syst-II: Express Briefs 53 3 (2006) 230-234
-
(2006)
IEEE Trans Circ Syst-II: Express Briefs
, vol.53
, Issue.3
, pp. 230-234
-
-
Xu, S.1
Lam, J.2
-
20
-
-
0003446303
-
-
Math Works, Naticvk, Massachusetts
-
Gahinet P, Nemirovskii A, Laub AJ, Chilali M. LMI control toolbox, Math Works, Naticvk, Massachusetts, 1995.
-
(1995)
LMI control toolbox
-
-
Gahinet, P.1
Nemirovskii, A.2
Laub, A.J.3
Chilali, M.4
-
21
-
-
0003595806
-
-
SIAM, Philadelphia, PA
-
Boyd S., Ghaoui L.E., Feron E., and Balakrishnan V. Linear matrix inequalities in system and control theory (1994), SIAM, Philadelphia, PA
-
(1994)
Linear matrix inequalities in system and control theory
-
-
Boyd, S.1
Ghaoui, L.E.2
Feron, E.3
Balakrishnan, V.4
-
22
-
-
29144515889
-
Augment Lyapunov functional and delay-dependent stability criteria for neutral systems
-
Yong H., Qing-Guo W., Chong L., and Min W. Augment Lyapunov functional and delay-dependent stability criteria for neutral systems. Int J Robust Nonlin Control 15 (2005) 923-933
-
(2005)
Int J Robust Nonlin Control
, vol.15
, pp. 923-933
-
-
Yong, H.1
Qing-Guo, W.2
Chong, L.3
Min, W.4
|