메뉴 건너뛰기




Volumn 36, Issue 6, 2009, Pages 9747-9752

An effective mining approach for up-to-date patterns

Author keywords

Data mining; Lifetime; Temporal patterns; Up to date patterns

Indexed keywords

ITEM SETS; ITEMSET; KNOWLEDGE DISCOVERY FROM DATABASE; LIFETIME; MINING ASSOCIATION RULES; NEW CONCEPTS; SUPPORT THRESHOLDS; TEMPORAL DATA MININGS; TEMPORAL DATUM; TEMPORAL PATTERNS; UP-TO-DATE PATTERNS;

EID: 64049088807     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.02.029     Document Type: Article
Times cited : (28)

References (18)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large database
    • In The, Washington, DC, USA
    • Agrawal, R., Imielinksi, T., & Swami, A. (1993a). Mining association rules between sets of items in large database. In The ACM SIGMOD conference, Washington, DC, USA.
    • (1993) ACM SIGMOD conference
    • Agrawal, R.1    Imielinksi, T.2    Swami, A.3
  • 4
    • 0029212693 scopus 로고    scopus 로고
    • Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In The 7th international conference on data engineering (pp. 3-14).
    • Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In The 7th international conference on data engineering (pp. 3-14).
  • 5
    • 64049083327 scopus 로고    scopus 로고
    • Agrawal, R., Srikant, R., & Vu, Q. (1997). Mining association rules with item constraints. In The 3rd international conference on knowledge discovery in databases and data mining, Newport Beach, California.
    • Agrawal, R., Srikant, R., & Vu, Q. (1997). Mining association rules with item constraints. In The 3rd international conference on knowledge discovery in databases and data mining, Newport Beach, California.
  • 6
    • 0031162961 scopus 로고    scopus 로고
    • Dynamic itemset counting and implication rules for market basket data
    • In The, Tucson, Arizona, USA pp
    • Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and implication rules for market basket data. In The ACM SIGMOD conference, Tucson, Arizona, USA (pp. 255-264).
    • (1997) ACM SIGMOD conference , pp. 255-264
    • Brin, S.1    Motwani, R.2    Ullman, J.D.3    Tsur, S.4
  • 8
    • 64049093519 scopus 로고    scopus 로고
    • Han, J., & Fu, Y. (1995). Discovery of multiple-level association rules from large database. In The 21st international conference on very large data bases, Zurich, Switzerland (pp. 420-431).
    • Han, J., & Fu, Y. (1995). Discovery of multiple-level association rules from large database. In The 21st international conference on very large data bases, Zurich, Switzerland (pp. 420-431).
  • 9
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In ACM SIGMOD conference (pp. 1-12).
    • (2000) ACM SIGMOD conference , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 10
    • 26944451649 scopus 로고    scopus 로고
    • Discovering partial periodic sequential association rules with time lag in multiple sequences for prediction
    • Li D., and Deogun J.S. Discovering partial periodic sequential association rules with time lag in multiple sequences for prediction. Lecture Notes in Computer Sciences 3488 (2005) 332-341
    • (2005) Lecture Notes in Computer Sciences , vol.3488 , pp. 332-341
    • Li, D.1    Deogun, J.S.2
  • 13
    • 0031702885 scopus 로고    scopus 로고
    • Ozden, B., Ramaswamy, S., & Silberschatz, A. (1998). Cyclic association rules. In The 14th international conference on data engineering, Orlando, Florida, USA (pp. 12-421).
    • Ozden, B., Ramaswamy, S., & Silberschatz, A. (1998). Cyclic association rules. In The 14th international conference on data engineering, Orlando, Florida, USA (pp. 12-421).
  • 16
    • 0002082857 scopus 로고
    • An efficient algorithm for mining association rules in large databases
    • In The
    • Savasere, A., Omiecinski, E., & Navathe, S. (1995). An efficient algorithm for mining association rules in large databases. In The ACM VLDB conference (pp. 432-444).
    • (1995) ACM VLDB conference , pp. 432-444
    • Savasere, A.1    Omiecinski, E.2    Navathe, S.3
  • 17
    • 64049116445 scopus 로고    scopus 로고
    • Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. In The 21st international conference on very large data bases, Zurich, Switzerland (pp. 407-419).
    • Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. In The 21st international conference on very large data bases, Zurich, Switzerland (pp. 407-419).
  • 18
    • 26944446908 scopus 로고    scopus 로고
    • Temporal approach to association rule mining using T-tree and P-tree
    • Verma K., Vyas O.P., and Vyas R. Temporal approach to association rule mining using T-tree and P-tree. Lecture Notes in Computer Science 3587 (2005) 651-659
    • (2005) Lecture Notes in Computer Science , vol.3587 , pp. 651-659
    • Verma, K.1    Vyas, O.P.2    Vyas, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.