메뉴 건너뛰기




Volumn 113, Issue 13, 2009, Pages 3186-3196

Effect of methoxy substituents on the structural and electronic properties of fluorinated cyclobutenes: A study of hexafluorocyclobutene and its vinyl methoxy derivatives by XRD and periodic DFT calculations

Author keywords

[No Author keywords available]

Indexed keywords

CRYSTAL STRUCTURE; ELECTRONIC PROPERTIES; ELECTROSTATICS; FLUORINE; PROBABILITY DENSITY FUNCTION; QUANTUM THEORY; SULFUR COMPOUNDS;

EID: 63849258589     PISSN: 10895639     EISSN: None     Source Type: Journal    
DOI: 10.1021/jp8084809     Document Type: Article
Times cited : (13)

References (61)
  • 7
    • 63849170727 scopus 로고    scopus 로고
    • U.S. Pat. Appl. Publ.
    • 18 pp,Patent Application US 2006-606874 20061201
    • Terasaki, A.; Seki, J.; Tanaka, I. U.S. Pat. Appl. Publ. 2007, 18 pp,Patent Application US 2006-606874 20061201.
    • (2007)
    • Terasaki, A.1    Seki, J.2    Tanaka, I.3
  • 8
    • 63849092070 scopus 로고    scopus 로고
    • U.S. Pat. Appl. Publ.
    • 11 pp,Patent Application US 2006-479287 20060629
    • Yu, J. S.; Kim, J.-K. U.S. Pat. Appl. Publ. 2007, 11 pp,Patent Application US 2006-479287 20060629.
    • (2007)
    • Yu, J.S.1    Kim, J.-K.2
  • 20
    • 63849099068 scopus 로고    scopus 로고
    • Bruker AXS Inc, Madison, WI
    • SMART1000 User Manual; Bruker AXS Inc.: Madison, WI, 2001.
    • (2001) SMART1000 User Manual
  • 25
    • 84904778417 scopus 로고    scopus 로고
    • Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 02/02/06, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. See also https://bse.pnl.gov/bse/portal.
    • Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 02/02/06, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. See also https://bse.pnl.gov/bse/portal.
  • 28
    • 84904771460 scopus 로고    scopus 로고
    • Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Montgomery, J. A, Jr, Vreven, T, Kudin, K. N, Burant, J. C; Millam, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li, X, Knox, J. E, Hratchian, H. P, Cross, J. B, Bakken, V, Adamo, C; Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin, A. J, Cammi, R, Pomelli, C; Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C; Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cur, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Keith, T
    • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cur, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C; Pople, J. A. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
  • 29
    • 84904778585 scopus 로고    scopus 로고
    • Only in the case of PMCB(which has an intermediate number of atoms between HFCB and TDCB)was a full frequency analysis performed with the CRYSTAL06 program, as this version of the code allows the evaluation of the vibration modes in the condensed phase at the G point. The calculation took about 3 weeks on a very powerful computing platform with a 3056 MHz CPU. As expected, only the first three modes(i.e. those corresponding to the lowest frequencies)showed very small(̃10-9)and negative eigenvalues. Actually, the latter should be zero at the G point, as they correspond to the translational(acoustic) degrees of freedom of the molecule as a whole. No other negative eigenvalue has been found, confirming that the optimized solid-state geometry of PMCB corresponds to a true minimum on the PES
    • -9)and negative eigenvalues. Actually, the latter should be zero at the G point, as they correspond to the translational(acoustic) degrees of freedom of the molecule as a whole. No other negative eigenvalue has been found, confirming that the optimized solid-state geometry of PMCB corresponds to a true minimum on the PES.
  • 31
    • 84904774749 scopus 로고    scopus 로고
    • For the gas-phase calculations, we also checked the 6-31G(d)basis set, which is the same used in the periodic optimizations, with the same DFT B3LYP Hamiltonian. Qualitatively, we obtained the same results as in the 6-311+G(d)calculations; anyhow, a larger basis set with diffuse functions on C and F atoms is essential to properly describe the electrostatic properties and the relaxation energies of the isolated molecules. The Mulliken dipole vector modulus, as an example, is equal to 1.289, 4.274, and 4.377 D in HFCB, PMCB, and TDCB optimized gas-phase geometries at the 6-31G(d)theory level, respectively. The introduction of the diffuse functions on the heavy atoms(6-31+G(d)basis set)increases the same quantities to 1.476, 4.600, and 5.210 D, respectively. When the larger 6-311 +G(d)basis set is used, a further(although much smaller)increment of the vector moduli takes place, their values becoming 1.556, 4.680, and 5.283 D, respectively. Additional introduction of diffuse functions6-31
    • For the gas-phase calculations, we also checked the 6-31G(d)basis set, which is the same used in the periodic optimizations, with the same DFT B3LYP Hamiltonian. Qualitatively, we obtained the same results as in the 6-311+G(d)calculations; anyhow, a larger basis set with diffuse functions on C and F atoms is essential to properly describe the electrostatic properties and the relaxation energies of the isolated molecules. The Mulliken dipole vector modulus, as an example, is equal to 1.289, 4.274, and 4.377 D in HFCB, PMCB, and TDCB optimized gas-phase geometries at the 6-31G(d)theory level, respectively. The introduction of the diffuse functions on the heavy atoms(6-31+G(d)basis set)increases the same quantities to 1.476, 4.600, and 5.210 D, respectively. When the larger 6-311 +G(d)basis set is used, a further(although much smaller)increment of the vector moduli takes place, their values becoming 1.556, 4.680, and 5.283 D, respectively. Additional introduction of diffuse functions(6-311++G(d)basis set)or polarization functions(6-311+G(d,p)basis set)on the hydrogen atoms in the two methoxy derivatives has a negligible influence on both their dipole vectors and their relaxation energies. We therefore chose the 6-311 +G(d)basis set as our reference theory level for all the present gas-phase optimizations.
  • 34
    • 84904784647 scopus 로고    scopus 로고
    • The residual charge is defined as the difference between the molecular charge obtained by summing the electron population in each atomic basin and the true molecular chargezero, in the present case, It should be considered as an index of the integration accuracy
    • The residual charge is defined as the difference between the molecular charge obtained by summing the electron population in each atomic basin and the true molecular charge(zero, in the present case). It should be considered as an index of the integration accuracy.
  • 44
    • 84904776652 scopus 로고    scopus 로고
    • Spackman, M. A. Keynote Lecture KN23.28 at IUCR2005, Book of Abstracts; Firenze; 2005; p C5.
    • Spackman, M. A. Keynote Lecture KN23.28 at IUCR2005, Book of Abstracts; Firenze; 2005; p C5.
  • 45
    • 63849280266 scopus 로고    scopus 로고
    • CNR-ISTM, Institute of Molecular Science and Technologies: Milano, Italy, URL
    • Barzaghi, M. PAMoC(Version 2002.0), Online User's Manual; CNR-ISTM, Institute of Molecular Science and Technologies: Milano, Italy, 2002; URL: www.istm.cnr.it/∼barz/pamoc/.
    • (2002) PAMoC(Version 2002.0), Online User's Manual
    • Barzaghi, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.