-
1
-
-
84865486245
-
Principles of geostatistics
-
Mathcron G. Principles of geostatistics. Economic Geology 1963; 58:1246-1266.
-
(1963)
Economic Geology
, vol.58
, pp. 1246-1266
-
-
Mathcron, G.1
-
3
-
-
84972517827
-
Design and analysis of computer experiments
-
Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of computer experiments. Statistical Science 1989; 4(4):409-435.
-
(1989)
Statistical Science
, vol.4
, Issue.4
, pp. 409-435
-
-
Sacks, J.1
Welch, W.J.2
Mitchell, T.J.3
Wynn, H.P.4
-
6
-
-
44349160434
-
Approches statistiques des expériences simulées.
-
Jourdan A. Approches statistiques des expériences simulées. Revue de Statistiques Appliquees 2002; 50:49-64.
-
(2002)
Revue de Statistiques Appliquees
, vol.50
, pp. 49-64
-
-
Jourdan, A.1
-
7
-
-
17444414416
-
Use of Kriging models to approximate deterministic computer models
-
Martin JD, Simpson TW. Use of Kriging models to approximate deterministic computer models. AIAA Journal 2005; 43(4): 853-863.
-
(2005)
AIAA Journal
, vol.43
, Issue.4
, pp. 853-863
-
-
Martin, J.D.1
Simpson, T.W.2
-
9
-
-
33745699573
-
Bayesian analysis of computer code outputs: A tutorial
-
O'Hagan A. Bayesian analysis of computer code outputs: a tutorial. Reliability Engineering and System Safety 2006; 91:1290-1300.
-
(2006)
Reliability Engineering and System Safety
, vol.91
, pp. 1290-1300
-
-
O'Hagan, A.1
-
10
-
-
0000844245
-
Uniform asymptotic normality of the maximum likelihood estimator
-
Sweeting TJ. Uniform asymptotic normality of the maximum likelihood estimator. The Annals of Statistics 1980; 8(6): 1375-1381.
-
(1980)
The Annals of Statistics
, vol.8
, Issue.6
, pp. 1375-1381
-
-
Sweeting, T.J.1
-
11
-
-
0001196683
-
Maximum likelihood estimation of models for residual covariance in spatial regression
-
Mardia KV, Marshall RJ. Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 1984; 71:135-146.
-
(1984)
Biometrika
, vol.71
, pp. 135-146
-
-
Mardia, K.V.1
Marshall, R.J.2
-
12
-
-
0032381318
-
Fisher information and maximum-likelihood estimation of covariance parameters in gaussian stochastic processes
-
Abt M, Welch WJ. Fisher information and maximum-likelihood estimation of covariance parameters in gaussian stochastic processes. The Canadian Journal of Statistics 1998; 26:127-137.
-
(1998)
The Canadian Journal of Statistics
, vol.26
, pp. 127-137
-
-
Abt, M.1
Welch, W.J.2
-
14
-
-
0033242689
-
Estimating the prediction mean squared error in gaussian stochastic processes with exponential covariance structure
-
Abt M. Estimating the prediction mean squared error in gaussian stochastic processes with exponential covariance structure. Scandinavian Journal of Statistics 1999; 26:563-578.
-
(1999)
Scandinavian Journal of Statistics
, vol.26
, pp. 563-578
-
-
Abt, M.1
-
15
-
-
18944382184
-
Analysis of computer experiments using penalized likelihood in gaussian Kriging models
-
Li R, Sudjianto A. Analysis of computer experiments using penalized likelihood in gaussian Kriging models. Technometrics 2005; 47:111-120.
-
(2005)
Technometrics
, vol.47
, pp. 111-120
-
-
Li, R.1
Sudjianto, A.2
-
18
-
-
0001297415
-
When do we need a trend model in Kriging?
-
Journel AG, Rossi ME. When do we need a trend model in Kriging? Mathematical Geology 1989; 21(7):715-739.
-
(1989)
Mathematical Geology
, vol.21
, Issue.7
, pp. 715-739
-
-
Journel, A.G.1
Rossi, M.E.2
-
20
-
-
63849269904
-
-
Wahba G. Spline Models for Observational Data. S1AM: Philadelphia, PA, 1990.
-
Wahba G. Spline Models for Observational Data. S1AM: Philadelphia, PA, 1990.
-
-
-
-
21
-
-
33748324384
-
-
R Development Core Team, R Foundation for Statistical Computing: Vienna, Austria, ISBN 3-900051-07-0
-
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2006. ISBN 3-900051-07-0.
-
(2006)
R: A Language and Environment for Statistical Computing
-
-
-
24
-
-
0000296286
-
Computer experiments
-
Technical Report, Department of Statistics, Stanford University
-
Koehler JR, Owen AB. Computer experiments. Technical Report, Department of Statistics, Stanford University, 1996.
-
(1996)
-
-
Koehler, J.R.1
Owen, A.B.2
|