-
2
-
-
0040774317
-
-
10.1103/PhysRev.155.1428
-
Y. Aharonov and L. Susskind, Phys. Rev. 155, 1428 (1967). 10.1103/PhysRev.155.1428
-
(1967)
Phys. Rev.
, vol.155
, pp. 1428
-
-
Aharonov, Y.1
Susskind, L.2
-
3
-
-
63649126946
-
-
Our definition of finite references differs from the bounded references of Bartlett. In the latter case the bound is on some physical parameter of the reference such as the number of spin-1/2 particles or the mean photon number. In particular, bounded references can have either finite- or infinite-dimensional state spaces. In contrast, a finite reference is associated with a finite-dimensional state space. This state space could be a fixed subspace of an infinite-dimensional Hilbert space. The important point in the context of this paper is that a finite reference has a finite number of adjustable parameters
-
Our definition of finite references differs from the bounded references of Bartlett. In the latter case the bound is on some physical parameter of the reference such as the number of spin-1/2 particles or the mean photon number. In particular, bounded references can have either finite- or infinite-dimensional state spaces. In contrast, a finite reference is associated with a finite-dimensional state space. This state space could be a fixed subspace of an infinite-dimensional Hilbert space. The important point in the context of this paper is that a finite reference has a finite number of adjustable parameters.
-
-
-
-
5
-
-
43949106540
-
-
10.1103/PhysRevD.77.104012
-
F. Girelli and D. Poulin, Phys. Rev. D 77, 104012 (2008). 10.1103/PhysRevD.77.104012
-
(2008)
Phys. Rev. D
, vol.77
, pp. 104012
-
-
Girelli, F.1
Poulin, D.2
-
6
-
-
41549115842
-
-
10.1103/PhysRevA.77.032114
-
J. A. Vaccaro, F. Anselmi, H. M. Wiseman, and K. Jacobs, Phys. Rev. A 77, 032114 (2008). 10.1103/PhysRevA.77.032114
-
(2008)
Phys. Rev. A
, vol.77
, pp. 032114
-
-
Vaccaro, J.A.1
Anselmi, F.2
Wiseman, H.M.3
Jacobs, K.4
-
17
-
-
0036473360
-
-
10.1103/PhysRevA.65.022308
-
J. Gea-Banacloche, Phys. Rev. A 65, 022308 (2002). 10.1103/PhysRevA.65. 022308
-
(2002)
Phys. Rev. A
, vol.65
, pp. 022308
-
-
Gea-Banacloche, J.1
-
18
-
-
18244413924
-
-
10.1103/PhysRevA.68.046301
-
W. M. Itano, Phys. Rev. A 68, 046301 (2003). 10.1103/PhysRevA.68.046301
-
(2003)
Phys. Rev. A
, vol.68
, pp. 046301
-
-
Itano, W.M.1
-
19
-
-
18444382671
-
-
10.1103/PhysRevA.71.013805
-
H. Nha and H. J. Carmichael, Phys. Rev. A 71, 013805 (2005). 10.1103/PhysRevA.71.013805
-
(2005)
Phys. Rev. A
, vol.71
, pp. 013805
-
-
Nha, H.1
Carmichael, H.J.2
-
20
-
-
25644444749
-
-
10.1142/S0219749903000437
-
M. Ozawa, Int. J. Quantum Inf. 1, 569 (2003). 10.1142/S0219749903000437
-
(2003)
Int. J. Quantum Inf.
, vol.1
, pp. 569
-
-
Ozawa, M.1
-
21
-
-
29144533607
-
-
edited by S. M. Barnett, E. Anderson, J. Jeffers, P. Öhberg, and AIP, Melville, NY, AIP Conf. Proc. No. 734 (O. Hirota
-
M. Ozawa, in Quantum Communication, Measurement, and Computing, edited by, S. M. Barnett, E. Anderson, J. Jeffers, P. Öhberg, and, O. Hirota, AIP Conf. Proc. No. 734 (AIP, Melville, NY, 2004), p. 95.
-
(2004)
Quantum Communication, Measurement, and Computing
, pp. 95
-
-
Ozawa, M.1
-
22
-
-
0347285494
-
-
10.1016/j.physleta.2003.12.001
-
M. Ozawa, Phys. Lett. A 320, 367 (2004). 10.1016/j.physleta.2003.12.001
-
(2004)
Phys. Lett. A
, vol.320
, pp. 367
-
-
Ozawa, M.1
-
24
-
-
33845797103
-
-
10.1103/PhysRevA.74.062313
-
S. J. Jones, H. M. Wiseman, S. D. Bartlett, J. A. Vaccaro, and D. T. Pope, Phys. Rev. A 74, 062313 (2006). 10.1103/PhysRevA.74.062313
-
(2006)
Phys. Rev. A
, vol.74
, pp. 062313
-
-
Jones, S.J.1
Wiseman, H.M.2
Bartlett, S.D.3
Vaccaro, J.A.4
Pope, D.T.5
-
26
-
-
63649094776
-
-
We note that Jones use the term extractable entanglement in place of accessible entanglement
-
We note that Jones use the term extractable entanglement in place of accessible entanglement.
-
-
-
-
27
-
-
63649131514
-
-
Our constraint of a fixed number of particles means that it is not possible to make a direct comparison between the reference states considered in this paper and van Enk's refbit state which is based on an uncertain number of shared particles.
-
Our constraint of a fixed number of particles means that it is not possible to make a direct comparison between the reference states considered in this paper and van Enk's refbit state which is based on an uncertain number of shared particles.
-
-
-
-
28
-
-
63649099486
-
-
In contrast, the state |n is invariant to the group operation T (Φ) in the sense that T (Φ) |n n| T † (Φ) = |n n|, which illustrates the symmetry of |n with respect to U(1).
-
In contrast, the state |n is invariant to the group operation T (Φ) in the sense that T (Φ) |n n| T † (Φ) = |n n|, which illustrates the symmetry of |n with respect to U(1).
-
-
-
-
30
-
-
0006278237
-
-
10.1080/09500349014550041
-
J. A. Vaccaro and D. T. Pegg, J. Mod. Opt. 37, 17 (1990). 10.1080/09500349014550041
-
(1990)
J. Mod. Opt.
, vol.37
, pp. 17
-
-
Vaccaro, J.A.1
Pegg, D.T.2
-
31
-
-
85057689414
-
-
edited by S. M. Barnett and J. A. Vaccaro (Taylor and Francis, London
-
The Quantum Phase Operator: A Review, edited by, S. M. Barnett, and, J. A. Vaccaro, (Taylor and Francis, London, 2007).
-
(2007)
The Quantum Phase Operator: A Review
-
-
-
32
-
-
0025445040
-
-
10.1016/0030-4018(90)90464-5
-
G. S. Summy and D. T. Pegg, Opt. Commun. 77, 75 (1990). 10.1016/0030-4018(90)90464-5
-
(1990)
Opt. Commun.
, vol.77
, pp. 75
-
-
Summy, G.S.1
Pegg, D.T.2
-
35
-
-
18444390228
-
-
10.1103/PhysRevA.71.032339
-
S. J. van Enk, Phys. Rev. A 71, 032339 (2005). 10.1103/PhysRevA.71.032339
-
(2005)
Phys. Rev. A
, vol.71
, pp. 032339
-
-
Van Enk, S.J.1
|