-
2
-
-
30844433514
-
-
BEZDEK, ḰAROLY; NASZÓDI, MÁRTON. Rigidity of ball-polyhedra in euclidean 3-space. European J. Combin. 27 (2006) 255-268. MR2199778 (2006k:51028), Zbl 1089.52010.
-
BEZDEK, ḰAROLY; NASZÓDI, MÁRTON. Rigidity of ball-polyhedra in euclidean 3-space. European J. Combin. 27 (2006) 255-268. MR2199778 (2006k:51028), Zbl 1089.52010.
-
-
-
-
3
-
-
55249104997
-
-
CARROLL, COLIN; JACOB, ADAM; QUINN, CONOR; WALTERS, ROBIN. The isoperimetric problem on planes with density. Bull. Austral. Math. Soc. 78 (2008) 177-197. MR2466858.
-
CARROLL, COLIN; JACOB, ADAM; QUINN, CONOR; WALTERS, ROBIN. The isoperimetric problem on planes with density. Bull. Austral. Math. Soc. 78 (2008) 177-197. MR2466858.
-
-
-
-
4
-
-
63449098097
-
-
CAYLEY, ARTHUR. The collected mathematical papers of Arthur Cayley. VII. Cambridge Univ. Press, Cambridge, 1894.
-
CAYLEY, ARTHUR. The collected mathematical papers of Arthur Cayley. Vol. VII. Cambridge Univ. Press, Cambridge, 1894.
-
-
-
-
5
-
-
84869278759
-
-
CORWIN, IVAN; HOFFMAN, NEIL; HURDER, STEPHANIE; ŠĚSUM, VOJISLAV; XU, YA. Differential geometry of manifolds with density. Rose-Hulman Und. Math. J. 7 (2006), no. 1.
-
CORWIN, IVAN; HOFFMAN, NEIL; HURDER, STEPHANIE; ŠĚSUM, VOJISLAV; XU, YA. Differential geometry of manifolds with density. Rose-Hulman Und. Math. J. 7 (2006), no. 1.
-
-
-
-
6
-
-
0035584894
-
-
HALES, THOMAS. The honeycomb conjecture. Disc. Comput. Geom. 25 (2001) 1-22. MR1797293 (2002a:52020), Zbl 1007.52008.
-
HALES, THOMAS. The honeycomb conjecture. Disc. Comput. Geom. 25 (2001) 1-22. MR1797293 (2002a:52020), Zbl 1007.52008.
-
-
-
-
7
-
-
63449139711
-
-
HALES, THOMAS. The honeycomb problem on the sphere. arXiv:math/0211234v1, 2002.
-
HALES, THOMAS. The honeycomb problem on the sphere. arXiv:math/0211234v1, 2002.
-
-
-
-
8
-
-
84972581765
-
-
HSIANG, WU-YI. On generalization of theorems of A.D. Alexandrov and C. Delaunay on hypersurfaces of constant mean curvature. Duke Math. J. 49 (1982) 485-496. MR0672494 (84k:53007), Zbl 0496.53006.
-
HSIANG, WU-YI. On generalization of theorems of A.D. Alexandrov and C. Delaunay on hypersurfaces of constant mean curvature. Duke Math. J. 49 (1982) 485-496. MR0672494 (84k:53007), Zbl 0496.53006.
-
-
-
-
9
-
-
0009930582
-
The perimeter-minimizing enclosure of two areas in S2
-
Zbl 0946.52004, MR1460978 99a:52010
-
MASTERS, JOSEPH D. The perimeter-minimizing enclosure of two areas in S2. Real Anal. Exchange 22 (1996) 1-10. MR1460978 (99a:52010), Zbl 0946.52004.
-
(1996)
Real Anal. Exchange
, vol.22
, pp. 1-10
-
-
MASTERS, J.D.1
-
10
-
-
63449083584
-
-
MAURMANN, QUINN; ENGELSTEIN, MAX; MARCUCCIO, ANTHONY; PRITCHARD, TARYN. Asymptotics of perimeter-minimizing partitions. Can. Math. Bull., to appear.
-
MAURMANN, QUINN; ENGELSTEIN, MAX; MARCUCCIO, ANTHONY; PRITCHARD, TARYN. Asymptotics of perimeter-minimizing partitions. Can. Math. Bull., to appear.
-
-
-
-
12
-
-
63449096176
-
-
MORGAN, FRANK. Geometric measure theory. A beginner's guide. Fourth edition. Elsevier/Academic Press, Amsterdam, 2009. viii+249 pp. ISBN: 978-0-12-374444-9. MR2455580, Zbl 0974.49025.
-
MORGAN, FRANK. Geometric measure theory. A beginner's guide. Fourth edition. Elsevier/Academic Press, Amsterdam, 2009. viii+249 pp. ISBN: 978-0-12-374444-9. MR2455580, Zbl 0974.49025.
-
-
-
-
13
-
-
32644448806
-
-
MORGAN, FRANK. Manifolds with density. Notices Amer. Math. Soc. 52 (2005) 853-858. MR2161354 (2006g:53044), Zbl 1118.53022.
-
MORGAN, FRANK. Manifolds with density. Notices Amer. Math. Soc. 52 (2005) 853-858. MR2161354 (2006g:53044), Zbl 1118.53022.
-
-
-
-
14
-
-
0344928071
-
-
MORGAN, FRANK. Regularity of isoperimetric hypersurfaces in Riemannian manifolds. Trans. Amer. Math. Soc. 355 (2003) 5041-5052. MR1997594 (2004j:49066), Zbl 1063.49031.
-
MORGAN, FRANK. Regularity of isoperimetric hypersurfaces in Riemannian manifolds. Trans. Amer. Math. Soc. 355 (2003) 5041-5052. MR1997594 (2004j:49066), Zbl 1063.49031.
-
-
-
-
15
-
-
63449141560
-
-
MORGAN, FRANK. Riemannian geometry. Second edition. A.K. Peters, Ltd., Wellesley, MA, 1998. x+156 pp. ISBN: 1-56881-073-3. MR1600519 (98i:53001), Zbl 0911.53001.
-
MORGAN, FRANK. Riemannian geometry. Second edition. A.K. Peters, Ltd., Wellesley, MA, 1998. x+156 pp. ISBN: 1-56881-073-3. MR1600519 (98i:53001), Zbl 0911.53001.
-
-
-
-
16
-
-
84972580766
-
-
MORGAN, FRANK. Soap bubbles in R2 and in surfaces. Pacific J. Math. 165 (1994) 347-361. MR1300837 (96a:58064), Zbl 0820.53002.
-
MORGAN, FRANK. Soap bubbles in R2 and in surfaces. Pacific J. Math. 165 (1994) 347-361. MR1300837 (96a:58064), Zbl 0820.53002.
-
-
-
-
17
-
-
23044524150
-
-
MORGAN, FRANK; Hutchings, Michael; Howards, Hugh. The isoperimetric problem on surfaces of revolution of decreasing gauss curvature. Trans. Amer. Math. Soc. 352 (2000) 4889-4909. MR1661278 (2001b:58024), Zbl 0976.53082.
-
MORGAN, FRANK; Hutchings, Michael; Howards, Hugh. The isoperimetric problem on surfaces of revolution of decreasing gauss curvature. Trans. Amer. Math. Soc. 352 (2000) 4889-4909. MR1661278 (2001b:58024), Zbl 0976.53082.
-
-
-
-
18
-
-
63449094653
-
-
QUINN, CONOR. Least-perimeter partitions of the sphere. Rose-Hulman Und. Math. J. 8 (2007), no. 2.
-
QUINN, CONOR. Least-perimeter partitions of the sphere. Rose-Hulman Und. Math. J. 8 (2007), no. 2.
-
-
-
-
19
-
-
84867934337
-
-
REICHARDT, BEN. Proof of the double bubble conjecture in Rn. J. Geom. Anal. 18 (2008) 172-191. MR2365672 (2008m:53018), Zbl 1149.53009.
-
REICHARDT, BEN. Proof of the double bubble conjecture in Rn. J. Geom. Anal. 18 (2008) 172-191. MR2365672 (2008m:53018), Zbl 1149.53009.
-
-
-
-
20
-
-
0041906588
-
-
RITOŔE, MANUEL. Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces. Comm. Anal. Geom. 9 (2001) 1093-1138. MR1883725 (2003a:53018), Zbl 1018.53003.
-
RITOŔE, MANUEL. Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces. Comm. Anal. Geom. 9 (2001) 1093-1138. MR1883725 (2003a:53018), Zbl 1018.53003.
-
-
-
-
21
-
-
63449106735
-
-
ROS, ANTONIO. The isoperimetric problem. Global theory of minimal surfaces, Proceedings of the Clay Mathematics Institute 2001 summer school, Berkeley, CA, USA, June 25-July 27, 2001. Amer. Math. Soc., Providence, RI, 2005. Clay Mathematics Institute, Cambridge, MA. Clay Mathematics Proceedings 2 (2005) 175-209. MR2167260 (2006e:53023), Zbl 1125.49034.
-
ROS, ANTONIO. The isoperimetric problem. Global theory of minimal surfaces, Proceedings of the Clay Mathematics Institute 2001 summer school, Berkeley, CA, USA, June 25-July 27, 2001. Amer. Math. Soc., Providence, RI, 2005. Clay Mathematics Institute, Cambridge, MA. Clay Mathematics Proceedings 2 (2005) 175-209. MR2167260 (2006e:53023), Zbl 1125.49034.
-
-
-
-
22
-
-
34848888287
-
-
ROSALES, CÉSAR; CANẼTE, ANTONIO; BAYLE, VINCENT; MORGAN, FRANK. On the isoperimetric problem in Euclidean space with density. Calc. Var. Partial Differential Equations 31 (2008) 27-46. MR2342613 (2008m:49212), Zbl 1126.49038.
-
ROSALES, CÉSAR; CANẼTE, ANTONIO; BAYLE, VINCENT; MORGAN, FRANK. On the isoperimetric problem in Euclidean space with density. Calc. Var. Partial Differential Equations 31 (2008) 27-46. MR2342613 (2008m:49212), Zbl 1126.49038.
-
-
-
|