메뉴 건너뛰기




Volumn , Issue , 2008, Pages 203-210

Flexible recommendations over rich data

Author keywords

CourseRank; Flexible recommendations; Workflows

Indexed keywords

STUDENTS; USER INTERFACES;

EID: 63449120827     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1454008.1454041     Document Type: Conference Paper
Times cited : (14)

References (23)
  • 1
    • 63449109580 scopus 로고    scopus 로고
    • url
    • CourseRank: url:http://courserank.stanford.edu.
    • CourseRank
  • 2
    • 67649651381 scopus 로고    scopus 로고
    • url
    • The Stanford Daily: url: http://stanforddaily.com/article/2007/12/5/- editorialcourserankalongoverduesuccess.
    • The Stanford Daily
  • 3
    • 34250016241 scopus 로고    scopus 로고
    • New recommendation techniques for multi-criteria rating systems
    • G. Adomavicius and Y. Kwon. New recommendation techniques for multi-criteria rating systems. IEEE Intelligent Systems, 22(3), 2007.
    • (2007) IEEE Intelligent Systems , vol.22 , Issue.3
    • Adomavicius, G.1    Kwon, Y.2
  • 4
    • 13844263560 scopus 로고    scopus 로고
    • Multidimensional recommender systems: A data warehousing approach
    • G. Adomavicius and A. Tuzhilin. Multidimensional recommender systems: A data warehousing approach. In WELCOM, 2001.
    • (2001) WELCOM
    • Adomavicius, G.1    Tuzhilin, A.2
  • 5
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6):734-749, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 6
    • 0031103679 scopus 로고    scopus 로고
    • Fab: Content-based, collaborative recommendation
    • M. Balabanovic and Y. Shoham. Fab: Content-based, collaborative recommendation. C. of ACM, 40(3):66-72, 1997.
    • (1997) C. of ACM , vol.40 , Issue.3 , pp. 66-72
    • Balabanovic, M.1    Shoham, Y.2
  • 7
    • 35348969366 scopus 로고    scopus 로고
    • Towards trustworthy recommender systems: An analysis of attack models and algorithm robustness
    • R. B. Bamshad Mobasher, Robin Burke and C. Williams. Towards trustworthy recommender systems: An analysis of attack models and algorithm robustness. ACM Transactions on Internet Technology, 7(2), 2007.
    • (2007) ACM Transactions on Internet Technology , vol.7 , Issue.2
    • Bamshad Mobasher, R.B.1    Burke, R.2    Williams, C.3
  • 8
    • 0002731035 scopus 로고    scopus 로고
    • Learning collaborative information filters
    • D. Billsus and M. Pazzani. Learning collaborative information filters. In ICML, 1998.
    • (1998) ICML
    • Billsus, D.1    Pazzani, M.2
  • 11
    • 35348914807 scopus 로고    scopus 로고
    • Google news personalization: Scalable online collaborative filtering
    • A. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online collaborative filtering. In WWW, pages 271-280, 2007.
    • (2007) , pp. 271-280
    • Das, A.1    Datar, M.2    Garg, A.3    Rajaram, S.4
  • 12
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • D. Goldberg, D. Nichols, B. Oki, and D. Terry. Using collaborative filtering to weave an information tapestry. C. of ACM, 35(12):61-70, 1992.
    • (1992) C. of ACM , vol.35 , Issue.12 , pp. 61-70
    • Goldberg, D.1    Nichols, D.2    Oki, B.3    Terry, D.4
  • 14
    • 3042697346 scopus 로고    scopus 로고
    • Evaluating collaborative filtering recommender systems
    • J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating collaborative filtering recommender systems. TOIS, 22:5-53, 2004.
    • (2004) TOIS , vol.22 , pp. 5-53
    • Herlocker, J.1    Konstan, J.2    Terveen, L.3    Riedl, J.4
  • 15
    • 1542377533 scopus 로고    scopus 로고
    • Collaborative filtering via gaussian probabilistic latent semantic analysis
    • T. Hofmann. Collaborative filtering via gaussian probabilistic latent semantic analysis. In ACM SIGIR Conf., 2003.
    • (2003) ACM SIGIR Conf
    • Hofmann, T.1
  • 16
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • Jan/Feb
    • G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, Jan/Feb 2003.
    • (2003) IEEE Internet Computing
    • Linden, G.1    Smith, B.2    York, J.3
  • 19
    • 0031168547 scopus 로고    scopus 로고
    • Learning and revising user profiles: The identification of interesting web sites
    • M. Pazzani and D. Billsus. Learning and revising user profiles: The identification of interesting web sites. Machine Learning, 27:313-331, 1997.
    • (1997) Machine Learning , vol.27 , pp. 313-331
    • Pazzani, M.1    Billsus, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.