-
2
-
-
84867931089
-
A Hamiltonian regularization of the Burgers equation
-
Bhat H S and Fetecau R C 2006 A Hamiltonian regularization of the Burgers equation J. Nonlinear Sci. 16 615–38
-
(2006)
J. Nonlinear Sci
, vol.16
, pp. 615-638
-
-
Bhat, H S1
Fetecau, R C2
-
3
-
-
77956834067
-
A mathematical model illustrating the theory of turbulence
-
Burgers J M 1948 A mathematical model illustrating the theory of turbulence Adv. Appl. Mech. 1 171–99
-
(1948)
Adv. Appl. Mech
, vol.1
, pp. 171-199
-
-
Burgers, J M1
-
4
-
-
23044496611
-
Lagrangian averaging for compressible fluids
-
Bhat H S, Fetecau R C, Marsden J E, Mohseni K and West M 2005 Lagrangian averaging for compressible fluids SIAM J. Multiscale Model. Simul. 3 818–37
-
(2005)
SIAM J. Multiscale Model. Simul
, vol.3
, pp. 818-837
-
-
Bhat, H S1
Fetecau, R C2
Marsden, J E3
Mohseni, K4
West, M5
-
5
-
-
33748530968
-
Lagrangian averaging for the 1d compressible Euler equation
-
Bhat H S and Fetecau R C 2006 Lagrangian averaging for the 1d compressible Euler equation Discrete Contin. Dyn. Syst. B 6 979–1000
-
(2006)
Discrete Contin. Dyn. Syst. B
, vol.6
, pp. 979-1000
-
-
Bhat, H S1
Fetecau, R C2
-
6
-
-
12044254491
-
An integrable shallow water equation with peaked solitons
-
Camassa R and Holm D D 1993 An integrable shallow water equation with peaked solitons Phys. Rev. Lett. 71 1661–4
-
(1993)
Phys. Rev. Lett
, vol.71
, pp. 1661-1664
-
-
Camassa, R1
Holm, D D2
-
8
-
-
85038321142
-
An integrable shallow water equation with linear and nonlinear dispersion
-
Dullin H R, Gottwald G A and Holm D D 2001 An integrable shallow water equation with linear and nonlinear dispersion Phys. Rev. Lett. 87 4501–4
-
(2001)
Phys. Rev. Lett
, vol.87
, pp. 4501-4504
-
-
Dullin, H R1
Gottwald, G A2
Holm, D D3
-
9
-
-
0038170210
-
Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves
-
Dullin H R, Gottwald G A and Holm D D 2003 Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves Fluid Dyn. Res. 33 73–95
-
(2003)
Fluid Dyn. Res
, vol.33
, pp. 73-95
-
-
Dullin, H R1
Gottwald, G A2
Holm, D D3
-
10
-
-
1142304402
-
On asymptotically equivalent shallow water wave equations
-
Dullin H R, Gottwald G A and Holm D D 2004 On asymptotically equivalent shallow water wave equations Physica D 190 1–14
-
(2004)
Physica D
, vol.190
, pp. 1-14
-
-
Dullin, H R1
Gottwald, G A2
Holm, D D3
-
12
-
-
27544492167
-
Analysis of a regularized, time-staggered discretization method and its link to the semi-implicit method
-
Frank J, Reich S, Staniforth A, White A and Wood N 2005 Analysis of a regularized, time-staggered discretization method and its link to the semi-implicit method Atmos. Sci. Lett. 6 97–104
-
(2005)
Atmos. Sci. Lett
, vol.6
, pp. 97-104
-
-
Frank, J1
Reich, S2
Staniforth, A3
White, A4
Wood, N5
-
14
-
-
84990622676
-
On dispersive difference schemes: I Comm
-
Goodman J and Lax P D 1988 On dispersive difference schemes: I Comm. Pure Appl. Math. 41 591–613
-
(1988)
Pure Appl. Math
, vol.41
, pp. 591-613
-
-
Goodman, J1
Lax, P D2
-
15
-
-
11744318899
-
Euler–Poincaré models of ideal fluids with nonlinear dispersion
-
Holm D D, Marsden J E and Ratiu T S 1998 Euler–Poincaré models of ideal fluids with nonlinear dispersion Phys. Rev. Lett. 349 4173–6
-
(1998)
Phys. Rev. Lett
, vol.349
, pp. 4173-4176
-
-
Holm, D D1
Marsden, J E2
Ratiu, T S3
-
17
-
-
0001524186
-
On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary waves
-
de
-
Korteweg D J and Vries G de 1895 On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary waves Phil. Mag. 39 422–43
-
(1895)
Phil. Mag
, vol.39
, pp. 422-443
-
-
Korteweg, D J1
Vries, G2
-
20
-
-
0034825095
-
Peakons and periodic cusp waves in a generalized Camassa–Holm equation
-
Qian T and Tang M 2001 Peakons and periodic cusp waves in a generalized Camassa–Holm equation Chaos Solitons Fractals 12 1347–60
-
(2001)
Chaos Solitons Fractals
, vol.12
, pp. 1347-1360
-
-
Qian, T1
Tang, M2
|