-
7
-
-
23344448307
-
Perturbation methods for strongly non-linear oscillators using Lie transforms
-
(A. GURAN, editor). Singapore: World Scientific
-
V. V. COPPOLA 1997 in Nonlinear Dynamics: the Richard Rand 501 h Anniversary (A. GURAN, editor), 24-59. Singapore: World Scientific. Perturbation methods for strongly non-linear oscillators using Lie transforms.
-
(1997)
Nonlinear Dynamics: The Richard Rand 501 H Anniversary
, pp. 24-59
-
-
Coppola, V.V.1
-
9
-
-
0024648820
-
Extension and improvement to the Krylov-Bogolioubov methods using elliptic functions
-
S. B. YUSTE and J. D. BEJARANO 1986 International Journal of Control 49, 1127-1141. Extension and improvement to the Krylov-Bogolioubov methods using elliptic functions.
-
(1986)
International Journal of Control
, vol.49
, pp. 1127-1141
-
-
Yuste, S.B.1
Bejarano, J.D.2
-
11
-
-
0025702755
-
Generalized Fourier series and limit cycles of generalized Van der Pol oscillators
-
J. G. MARGALLO and J. D. BEJARANO 1990 Journal of Sound and Vibration 136, 453-466. Generalized Fourier series and limit cycles of generalized Van der Pol oscillators.
-
(1990)
Journal of Sound and Vibration
, vol.136
, pp. 453-466
-
-
Margallo, J.G.1
Bejarano, J.D.2
-
12
-
-
0025206791
-
Averaging using elliptic functions: Approximations of limit cycle
-
V. T. COPPOLA and R. H. RAND 1990 Acta Mechanica 81, 125-142. Averaging using elliptic functions: approximations of limit cycle.
-
(1990)
Acta Mechanica
, vol.81
, pp. 125-142
-
-
Coppola, V.T.1
Rand, R.H.2
-
13
-
-
0342295127
-
Macsyma program to implement averaging using elliptic functions
-
(K. R. MEYER and D. S. SCHMIDT, editors). New York: Springer-Verlag
-
V. T. COPPOLA and R. H. RAND 1991 Computer Aided Proofs in Analysis (K. R. MEYER and D. S. SCHMIDT, editors), 71-81. New York: Springer-Verlag. Macsyma program to implement averaging using elliptic functions.
-
(1991)
Computer Aided Proofs in Analysis
, pp. 71-81
-
-
Coppola, V.T.1
Rand, R.H.2
-
15
-
-
85030743638
-
World scientific series on nonlinear science, series A
-
. Singapore: World Scientific
-
A. D. MOROZOV 1998 Quasi-Conservative Systems: Cycles, Resonances, and Chaos, World Scientific series on Nonlinear Science, Series A, Vol. 30. Singapore: World Scientific.
-
(1998)
Quasi-conservative Systems: Cycles, Resonances, and Chaos
, vol.30
-
-
Morozov, A.D.1
-
16
-
-
0013027015
-
Homoclinic connections in strongly self-excited non-linear oscillators: The Melnikov function and the elliptic Lindsted-Poincaré method
-
M. BELHAQ, B. FIEDLER and F. LAKRAD 2000 Nonlinear Dynamics 23, 67-86. Homoclinic connections in strongly self-excited non-linear oscillators: the Melnikov function and the elliptic Lindsted-Poincaré method.
-
(2000)
Nonlinear Dynamics
, vol.23
, pp. 67-86
-
-
Belhaq, M.1
Fiedler, B.2
Lakrad, F.3
-
17
-
-
0034326135
-
Prediction of Homoclinic bifurcation: The elliptic averaging method
-
M. BELHAQ and F. LAKRAD 2000 Chaos Solitons and Fractals 11, 2251-2258. Prediction of Homoclinic bifurcation: the elliptic averaging method.
-
(2000)
Chaos Solitons and Fractals
, vol.11
, pp. 2251-2258
-
-
Belhaq, M.1
Lakrad, F.2
-
18
-
-
0034206434
-
On the elliptic harmonic balance method for mixed parity non-linear oscillators
-
M. BELHAQ and F. LAKRAD 2000 Journal of Sound and Vibration 233, 935-937. On the elliptic harmonic balance method for mixed parity non-linear oscillators.
-
(2000)
Journal of Sound and Vibration
, vol.233
, pp. 935-937
-
-
Belhaq, M.1
Lakrad, F.2
-
19
-
-
0031095817
-
An elliptic Lindstedt-Poincaré method for certain strongly non-linear oscillators
-
S. H. CHEN and Y. K. CHEUNG 1997 Nonlinear Dynamics 12, 199-213. An elliptic Lindstedt-Poincaré method for certain strongly non-linear oscillators.
-
(1997)
Nonlinear Dynamics
, vol.12
, pp. 199-213
-
-
Chen, S.H.1
Cheung, Y.K.2
-
20
-
-
0037808065
-
Periodic solutions of strongly quadratic non-linear oscillators by the elliptic Lindstedt-Poincaré method
-
S. H. CHEN, X. M. YANG and Y. K. CHEUNG 1999 Journal of Sound and Vibration 227, 1109-1118. Periodic solutions of strongly quadratic non-linear oscillators by the elliptic Lindstedt-Poincaré method.
-
(1999)
Journal of Sound and Vibration
, vol.227
, pp. 1109-1118
-
-
Chen, S.H.1
Yang, X.M.2
Cheung, Y.K.3
-
21
-
-
0030563949
-
An elliptic perturbation method for certain strongly non-linear oscillators
-
S. H. CHEN and Y. K. CHEUNG 1996 Journal of Sound and Vibration 192, 453-464. An elliptic perturbation method for certain strongly non-linear oscillators.
-
(1996)
Journal of Sound and Vibration
, vol.192
, pp. 453-464
-
-
Chen, S.H.1
Cheung, Y.K.2
-
22
-
-
0037808066
-
Periodic solutions of strongly quadratic non-linear oscillators by the elliptic perturbation method
-
S. H. CHEN, X. M. YANG and Y. K. CHEUNG 1998 Journal of Sound and Vibration 212, 771-780. Periodic solutions of strongly quadratic non-linear oscillators by the elliptic perturbation method.
-
(1998)
Journal of Sound and Vibration
, vol.212
, pp. 771-780
-
-
Chen, S.H.1
Yang, X.M.2
Cheung, Y.K.3
-
23
-
-
0032214547
-
The multiple scales method, homoclinic bifurcation and Melnikov's method for autonomous systems
-
P. SMITH 1998 International Journal of Bifurcation and Chaos 8, 2099-2105. The multiple scales method, homoclinic bifurcation and Melnikov's method for autonomous systems.
-
(1998)
International Journal of Bifurcation and Chaos
, vol.8
, pp. 2099-2105
-
-
Smith, P.1
-
24
-
-
0001282841
-
Analytical methods for solving strongly non-linear differential equations
-
L. CVETICANIN 1998 Journal of Sound and Vibration 214, 325-338. Analytical methods for solving strongly non-linear differential equations.
-
(1998)
Journal of Sound and Vibration
, vol.214
, pp. 325-338
-
-
Cveticanin, L.1
-
25
-
-
0004875004
-
Complex normal form for strongly non-linear vibration systems exemplified by Duffing-van der Pol equation
-
A. Y. T. LEUNG and Q. C. ZHANG 1998 Journal of Sound and Vibration 213, 907-914. Complex normal form for strongly non-linear vibration systems exemplified by Duffing-van der Pol equation.
-
(1998)
Journal of Sound and Vibration
, vol.213
, pp. 907-914
-
-
Leung, A.Y.T.1
Zhang, Q.C.2
-
26
-
-
0034230399
-
The multiple scales method for a class of autonomous strongly non-linear oscillators
-
M. BELHAQ and F. LAKRAD 2000 Journal of Sound and Vibration 234, 547-553. The multiple scales method for a class of autonomous strongly non-linear oscillators.
-
(2000)
Journal of Sound and Vibration
, vol.234
, pp. 547-553
-
-
Belhaq, M.1
Lakrad, F.2
-
28
-
-
23344434451
-
Wolfram media
-
Cambridge University Press, USA; third edition
-
S. WOLFRAM 1996 The Mathematica Book. Wolfram Media, Cambridge University Press, USA; third edition.
-
(1996)
The Mathematica Book
-
-
Wolfram, S.1
|