-
1
-
-
65549158788
-
-
10.1143/JPSJ.77.111006
-
M. Tsubota, J. Phys. Soc. Jpn. 77, 111006 (2008). 10.1143/JPSJ.77.111006
-
(2008)
J. Phys. Soc. Jpn.
, vol.77
, pp. 111006
-
-
Tsubota, M.1
-
2
-
-
63249094320
-
-
edited by W. P. Halperin and M. Tsubota (North-Holland, Amsterdam
-
Progress in Low Temperature Physics, edited by, W. P. Halperin, and, M. Tsubota, (North-Holland, Amsterdam, 2008), Vol. 16.
-
(2008)
Progress in Low Temperature Physics
, vol.16
-
-
-
4
-
-
34447300454
-
-
10.1103/PhysRevB.76.020504
-
N. Hashimoto, R. Goto, H. Yano, K. Obara, O. Ishikawa, and T. Hata, Phys. Rev. B 76, 020504 (R) (2007). 10.1103/PhysRevB.76.020504
-
(2007)
Phys. Rev. B
, vol.76
, pp. 020504
-
-
Hashimoto, N.1
Goto, R.2
Yano, H.3
Obara, K.4
Ishikawa, O.5
Hata, T.6
-
9
-
-
18144386182
-
-
10.1103/PhysRevLett.94.065302;
-
M. Kobayashi and M. Tsubota, Phys. Rev. Lett. 94, 065302 (2005) 10.1103/PhysRevLett.94.065302
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 065302
-
-
Kobayashi, M.1
Tsubota, M.2
-
12
-
-
17044448838
-
-
10.1103/PhysRevLett.86.244
-
S. N. Fisher, A. J. Hale, A. M. Guénault, and G. R. Pickett, Phys. Rev. Lett. 86, 244 (2001). 10.1103/PhysRevLett.86.244
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 244
-
-
Fisher, S.N.1
Hale, A.J.2
Guénault, A.M.3
Pickett, G.R.4
-
13
-
-
3242667260
-
-
10.1103/PhysRevLett.92.244501
-
H. A. Nichol, L. Skrbek, P. C. Hendry, and P. V. E. McClintock, Phys. Rev. Lett. 92, 244501 (2004). 10.1103/PhysRevLett.92.244501
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 244501
-
-
Nichol, H.A.1
Skrbek, L.2
Hendry, P.C.3
McClintock, P.V.E.4
-
14
-
-
27144469867
-
-
10.1103/PhysRevLett.95.035302
-
D. I. Bradley, D. O. Clubb, S. N. Fisher, A. M. Guénault, R. P. Haley, C. J. Matthews, G. R. Pickett, V. Tsepelin, and K. Zaki, Phys. Rev. Lett. 95, 035302 (2005). 10.1103/PhysRevLett.95.035302
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 035302
-
-
Bradley, D.I.1
Clubb, D.O.2
Fisher, S.N.3
Guénault, A.M.4
Haley, R.P.5
Matthews, C.J.6
Pickett, G.R.7
Tsepelin, V.8
Zaki, K.9
-
15
-
-
33846420203
-
-
10.1103/PhysRevB.75.012502
-
H. Yano, N. Hashimoto, A. Handa, M. Nakagawa, K. Obara, O. Ishikawa, and T. Hata, Phys. Rev. B 75, 012502 (2007). 10.1103/PhysRevB.75.012502
-
(2007)
Phys. Rev. B
, vol.75
, pp. 012502
-
-
Yano, H.1
Hashimoto, N.2
Handa, A.3
Nakagawa, M.4
Obara, K.5
Ishikawa, O.6
Hata, T.7
-
16
-
-
38849209042
-
-
10.1103/PhysRevLett.100.045301
-
R. Goto, S. Fujiyama, H. Yano, Y. Nago, N. Hashimoto, K. Obara, O. Ishikawa, M. Tsubota, and T. Hata, Phys. Rev. Lett. 100, 045301 (2008). 10.1103/PhysRevLett.100.045301
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 045301
-
-
Goto, R.1
Fujiyama, S.2
Yano, H.3
Nago, Y.4
Hashimoto, N.5
Obara, K.6
Ishikawa, O.7
Tsubota, M.8
Hata, T.9
-
17
-
-
38549117377
-
-
10.1007/s10909-007-9587-3
-
M. Blažková, M. Človečko, V. B. Eltsov, E. Gažo, R. de Graaf, J. J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R. E. Solntsev, and W. F. Vinen, J. Low Temp. Phys. 150, 525 (2008). 10.1007/s10909-007-9587-3
-
(2008)
J. Low Temp. Phys.
, vol.150
, pp. 525
-
-
Blažková, M.1
Človečko, M.2
Eltsov, V.B.3
Gažo, E.4
De Graaf, R.5
Hosio, J.J.6
Krusius, M.7
Schmoranzer, D.8
Schoepe, W.9
Skrbek, L.10
Skyba, P.11
Solntsev, R.E.12
Vinen, W.F.13
-
18
-
-
56349117284
-
-
edited by W. P. Halperin and M. Tsubota (North-Holland, Amsterdam
-
L. Skrbek and W. F. Vinen, in Progress in Low-Temperature Physics, edited by, W. P. Halperin, and, M. Tsubota, (North-Holland, Amsterdam, 2008), Vol. 16, p. 193.
-
(2008)
Progress in Low-Temperature Physics
, vol.16
, pp. 193
-
-
Skrbek, L.1
Vinen, W.F.2
-
22
-
-
3843077792
-
-
10.1103/PhysRevB.31.5782
-
K. W. Schwarz, Phys. Rev. B 31, 5782 (1985). 10.1103/PhysRevB.31.5782
-
(1985)
Phys. Rev. B
, vol.31
, pp. 5782
-
-
Schwarz, K.W.1
-
23
-
-
25344474030
-
-
10.1103/PhysRevB.38.2398
-
K. W. Schwarz, Phys. Rev. B 38, 2398 (1988). 10.1103/PhysRevB.38.2398
-
(1988)
Phys. Rev. B
, vol.38
, pp. 2398
-
-
Schwarz, K.W.1
-
24
-
-
85041150744
-
-
Cambridge University Press, Cambridge
-
P. G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992).
-
(1992)
Vortex Dynamics
-
-
Saffman, P.G.1
-
25
-
-
63249121108
-
-
An alternative solution can also be used and is valid even for a vortex ending at boundaries that extend infinitely. See Ref.. However, the method of the image vortex reduces the required computational time and is advantageous for this calculation.
-
An alternative solution can also be used and is valid even for a vortex ending at boundaries that extend infinitely. See Ref.. However, the method of the image vortex reduces the required computational time and is advantageous for this calculation.
-
-
-
-
26
-
-
33750606665
-
-
10.1103/PhysRevA.10.2306
-
K. W. Schwarz, Phys. Rev. A 10, 2306 (1974). 10.1103/PhysRevA.10.2306
-
(1974)
Phys. Rev. A
, vol.10
, pp. 2306
-
-
Schwarz, K.W.1
-
27
-
-
0000996165
-
-
10.1103/PhysRevLett.71.1375
-
J. Koplik and H. Levine, Phys. Rev. Lett. 71, 1375 (1993). 10.1103/PhysRevLett.71.1375
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 1375
-
-
Koplik, J.1
Levine, H.2
-
29
-
-
63249125684
-
-
E-PRBMDO-79-010909 for the movie of turbulence generation for the case of a sphere oscillating with a velocity magnitude of 90 mm/s. For more information on EPAPS, see
-
See EPAPS Document No. E-PRBMDO-79-010909 for the movie of turbulence generation for the case of a sphere oscillating with a velocity magnitude of 90 mm/s. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html
-
-
-
-
31
-
-
63249101933
-
-
Note that the computational box is different from V. The volume V is considered large enough so that the vortices never escape from V in the time period Tint, while vortices can escape from the computational box within Tint.
-
Note that the computational box is different from V. The volume V is considered large enough so that the vortices never escape from V in the time period Tint, while vortices can escape from the computational box within Tint.
-
-
-
-
32
-
-
63249135271
-
-
In the time interval Tint =100 ms, many vortices escape from the computational box as easily found in Fig. 3, and the statistical fluctuation of dK/dt is supposed to be small, we have not yet estimated the fluctuation of dK/dt systematically though.
-
In the time interval Tint =100 ms, many vortices escape from the computational box as easily found in Fig. 3, and the statistical fluctuation of dK/dt is supposed to be small, we have not yet estimated the fluctuation of dK/dt systematically though.
-
-
-
|