-
1
-
-
33646662704
-
-
10.1016/0022-3697(59)90036-8
-
P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959). 10.1016/0022- 3697(59)90036-8
-
(1959)
J. Phys. Chem. Solids
, vol.11
, pp. 26
-
-
Anderson, P.W.1
-
3
-
-
3343023226
-
-
10.1103/PhysRevLett.53.2437;
-
R. C. Dynes, J. P. Garno, G. B. Hertel, and T. P. Orlando, Phys. Rev. Lett. 53, 2437 (1984) 10.1103/PhysRevLett.53.2437
-
(1984)
Phys. Rev. Lett.
, vol.53
, pp. 2437
-
-
Dynes, R.C.1
Garno, J.P.2
Hertel, G.B.3
Orlando, T.P.4
-
12
-
-
54849408239
-
-
10.1103/PhysRevLett.101.157006
-
B. Sacépé, C. Chapelier, T. I. Baturina, V. M. Vinokur, M. R. Baklanov, and M. Sanquer, Phys. Rev. Lett. 101, 157006 (2008). 10.1103/PhysRevLett.101.157006
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 157006
-
-
Sacépé, B.1
Chapelier, C.2
Baturina, T.I.3
Vinokur, V.M.4
Baklanov, M.R.5
Sanquer, M.6
-
15
-
-
2142771754
-
-
10.1103/PhysRevLett.92.107005
-
G. Sambandamurthy, L. W. Engel, A. Johansson, and D. Shahar, Phys. Rev. Lett. 92, 107005 (2004). 10.1103/PhysRevLett.92.107005
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 107005
-
-
Sambandamurthy, G.1
Engel, L.W.2
Johansson, A.3
Shahar, D.4
-
16
-
-
33846340116
-
-
10.1103/PhysRevLett.98.027001
-
M. V. Feigel'man, L. B. Ioffe, V. E. Kravtsov, and E. A. Yuzbashyan, Phys. Rev. Lett. 98, 027001 (2007). 10.1103/PhysRevLett.98.027001
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 027001
-
-
Feigel'Man, M.V.1
Ioffe, L.B.2
Kravtsov, V.E.3
Yuzbashyan, E.A.4
-
17
-
-
84956137834
-
-
10.1088/0031-8949/1989/T27/004;
-
T. V. Ramakrishnan, Phys. Scr., T 27, 24 (1989) 10.1088/0031-8949/1989/ T27/004
-
(1989)
Phys. Scr., T
, vol.27
, pp. 24
-
-
Ramakrishnan, T.V.1
-
20
-
-
33644924665
-
-
10.1103/PhysRevLett.96.107003;
-
S. Oh, T. A. Crane, D. J. Van Harlingen, and J. N. Eckstein, Phys. Rev. Lett. 96, 107003 (2006) 10.1103/PhysRevLett.96.107003
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 107003
-
-
Oh, S.1
Crane, T.A.2
Van Harlingen, D.J.3
Eckstein, J.N.4
-
21
-
-
33846376504
-
-
10.1103/PhysRevLett.98.036401
-
P. Orgiani, C. Aruta, G. Balestrino, D. Born, L. Maritato, P. G. Medaglia, D. Stornaiuolo, F. Tafuri, and A. Tebano, Phys. Rev. Lett. 98, 036401 (2007). 10.1103/PhysRevLett.98.036401
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 036401
-
-
Orgiani, P.1
Aruta, C.2
Balestrino, G.3
Born, D.4
Maritato, L.5
Medaglia, P.G.6
Stornaiuolo, D.7
Tafuri, F.8
Tebano, A.9
-
22
-
-
44949157200
-
-
10.1103/PhysRevB.77.214503
-
S. P. Chockalingam, Madhavi Chand, John Jesudasan, Vikram Tripathi, and Pratap Raychaudhuri, Phys. Rev. B 77, 214503 (2008). 10.1103/PhysRevB.77.214503
-
(2008)
Phys. Rev. B
, vol.77
, pp. 214503
-
-
Chockalingam, S.P.1
Chand, M.2
Jesudasan, J.3
Tripathi, V.4
Raychaudhuri, P.5
-
23
-
-
63249090052
-
-
E-PRBMDO-79-105905 for a more detailed description of the tunneling device. For more information on EPAPS, see
-
See EPAPS Document No. E-PRBMDO-79-105905 for a more detailed description of the tunneling device. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html
-
-
-
-
24
-
-
63249093366
-
-
For details regarding the calculation of kF l, see Ref..
-
For details regarding the calculation of kF l, see Ref..
-
-
-
-
25
-
-
63249134468
-
-
Since the absolute value of Tc is determined with greater accuracy than ρn, the kF l values mentioned are estimated from Tc using the polynomial fit in Fig. 1. However, we verified that the kF l values estimated from ρn are within 20% of the value determined from Tc.
-
Since the absolute value of Tc is determined with greater accuracy than ρn, the kF l values mentioned are estimated from Tc using the polynomial fit in Fig. 1. However, we verified that the kF l values estimated from ρn are within 20% of the value determined from Tc.
-
-
-
-
26
-
-
0032484434
-
-
10.1103/PhysRevLett.80.149;
-
Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and Ø. Fischer, Phys. Rev. Lett. 80, 149 (1998) 10.1103/PhysRevLett.80.149
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 149
-
-
Renner, Ch.1
Revaz, B.2
Genoud, J.-Y.3
Kadowaki, K.4
Fischer Ø5
-
27
-
-
48349148101
-
-
10.1103/PhysRevB.78.014505;
-
L. Shan, Y. L. Wang, Y. Huang, S. L. Li, J. Zhao, P. Dai, and H. H. Wen, Phys. Rev. B 78, 014505 (2008) 10.1103/PhysRevB.78.014505
-
(2008)
Phys. Rev. B
, vol.78
, pp. 014505
-
-
Shan, L.1
Wang, Y.L.2
Huang, Y.3
Li, S.L.4
Zhao, J.5
Dai, P.6
Wen, H.H.7
-
28
-
-
41549160218
-
-
10.1038/nphys917;
-
J. W. Alldredge, Jinho Lee, K. McElroy, M. Wang, K. Fujita, Y. Kohsaka, C. Taylor, H. Eisaki, S. Uchida, P. J. Hirschfeld, and J. C. Davis, Nat. Phys. 4, 319 (2008) 10.1038/nphys917
-
(2008)
Nat. Phys.
, vol.4
, pp. 319
-
-
Alldredge, J.W.1
Lee, J.2
McElroy, K.3
Wang, M.4
Fujita, K.5
Kohsaka, Y.6
Taylor, C.7
Eisaki, H.8
Uchida, S.9
Hirschfeld, P.J.10
Davis, J.C.11
-
30
-
-
27144508730
-
-
10.1103/PhysRevLett.95.137001
-
M. Randeria, R. Sensarma, N. Trivedi, and Fu-Chun Zhang, Phys. Rev. Lett. 95, 137001 (2005). 10.1103/PhysRevLett.95.137001
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 137001
-
-
Randeria, M.1
Sensarma, R.2
Trivedi, N.3
Zhang, F.4
-
33
-
-
19644382445
-
-
The increase in Γ as the temperature approaches Tc is expected for a strong-coupling superconductor due to phonon-mediated recombination of electron-like and hole-like quasiparticles. See 10.1103/PhysRevB.14.4854;
-
The increase in Γ as the temperature approaches Tc is expected for a strong-coupling superconductor due to phonon-mediated recombination of electron-like and hole-like quasiparticles. See S. B. Kaplan, C. C. Chi, D. N. Langenberg, J. J. Chang, S. Jafarey, and D. J. Scalapino, Phys. Rev. B 14, 4854 (1976) 10.1103/PhysRevB.14.4854
-
(1976)
Phys. Rev. B
, vol.14
, pp. 4854
-
-
Kaplan, S.B.1
Chi, C.C.2
Langenberg, D.N.3
Chang, J.J.4
Jafarey, S.5
Scalapino, D.J.6
-
36
-
-
63249114669
-
-
The situation is however more complicated than for Josephson junction network where the amplitude of the order parameter can be reasonably assumed to be temperature independent (see Ref.). In this case both the amplitude and phase fluctuation have to be treated in a self-consistent way.
-
The situation is however more complicated than for Josephson junction network where the amplitude of the order parameter can be reasonably assumed to be temperature independent (see Ref.). In this case both the amplitude and phase fluctuation have to be treated in a self-consistent way.
-
-
-
-
38
-
-
25444458776
-
-
Leavens argued that the Anderson-Muttalib-Ramakrishnan (Ref.) effect is of undetermined magnitude due to the large uncertainty in the critical resistivity at which superconductivity is destroyed. See 10.1103/PhysRevB.31. 6072
-
Leavens argued that the Anderson-Muttalib-Ramakrishnan (Ref.) effect is of undetermined magnitude due to the large uncertainty in the critical resistivity at which superconductivity is destroyed. See C. R. Leavens, Phys. Rev. B 31, 6072 (1985). 10.1103/PhysRevB.31.6072
-
(1985)
Phys. Rev. B
, vol.31
, pp. 6072
-
-
Leavens, C.R.1
-
39
-
-
0000791359
-
-
10.1007/BF01392431
-
G. Bergmann, Z. Phys. 228, 25 (1969). 10.1007/BF01392431
-
(1969)
Z. Phys.
, vol.228
, pp. 25
-
-
Bergmann, G.1
-
40
-
-
0002129404
-
-
10.1007/BF01407638
-
G. Ziemba and G. Bergmann, Z. Phys. 237, 410 (1970). 10.1007/BF01407638
-
(1970)
Z. Phys.
, vol.237
, pp. 410
-
-
Ziemba, G.1
Bergmann, G.2
|