-
1
-
-
63249093485
-
-
For background on the RG and references, see, e.g., Refs..
-
For background on the RG and references, see, e.g., Refs..
-
-
-
-
2
-
-
0001898814
-
-
10.1016/0370-1573(74)90023-4
-
K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974). 10.1016/0370- 1573(74)90023-4
-
(1974)
Phys. Rep.
, vol.12
, pp. 75
-
-
Wilson, K.G.1
Kogut, J.2
-
3
-
-
0010852646
-
-
edited by C. Domb and M. S. Green (Academic, London
-
F. J. Wegner, in Phase Transitions and Critical Phenomena, edited by, C. Domb, and, M. S. Green, (Academic, London, 1976), Vol. 6, Chap., pp. 7-124.
-
(1976)
Phase Transitions and Critical Phenomena
, vol.6
, pp. 7-124
-
-
Wegner, F.J.1
-
4
-
-
0032393880
-
-
10.1103/RevModPhys.70.653
-
M. E. Fisher, Rev. Mod. Phys. 70, 653 (1998). 10.1103/RevModPhys.70.653
-
(1998)
Rev. Mod. Phys.
, vol.70
, pp. 653
-
-
Fisher, M.E.1
-
6
-
-
33745112388
-
-
10.1088/0305-4470/39/24/R01
-
R. Folk and G. Moser, J. Phys. A 39, R207 (2006). 10.1088/0305-4470/39/ 24/R01
-
(2006)
J. Phys. A
, vol.39
, pp. 207
-
-
Folk, R.1
Moser, G.2
-
7
-
-
0003130040
-
-
edited by C. Domb and J. L. Lebowitz (Academic, London
-
H. W. Diehl, in Phase Transitions and Critical Phenomena, edited by, C. Domb, and, J. L. Lebowitz, (Academic, London, 1986), Vol. 10, pp. 75-267.
-
(1986)
Phase Transitions and Critical Phenomena
, vol.10
, pp. 75-267
-
-
Diehl, H.W.1
-
8
-
-
0001502047
-
-
10.1142/S0217979297001751
-
H. W. Diehl, Int. J. Mod. Phys. B 11, 3503 (1997). 10.1142/ S0217979297001751
-
(1997)
Int. J. Mod. Phys. B
, vol.11
, pp. 3503
-
-
Diehl, H.W.1
-
9
-
-
63249097797
-
-
The application of the field-theoretic RG to the study of finite-size effects started with Symanzik's seminal paper (Ref.) on systems confined between parallel plates under Dirichlet boundary conditions, Brézin's work on the large- n limit (Ref.), and two papers (Refs.) developing a small ∈=4-d expansion for the study of finite-size effects in d -dimensional systems that are finite in all, or in all but one, of the d fundamental directions and satisfy periodic boundary conditions. For background and references on finite-size effects, see Refs..
-
The application of the field-theoretic RG to the study of finite-size effects started with Symanzik's seminal paper (Ref.) on systems confined between parallel plates under Dirichlet boundary conditions, Brézin's work on the large- n limit (Ref.), and two papers (Refs.) developing a small ∈=4-d expansion for the study of finite-size effects in d -dimensional systems that are finite in all, or in all but one, of the d fundamental directions and satisfy periodic boundary conditions. For background and references on finite-size effects, see Refs..
-
-
-
-
10
-
-
0002299935
-
-
10.1016/0550-3213(81)90482-X
-
K. Symanzik, Nucl. Phys. B 190, 1 (1981). 10.1016/0550-3213(81)90482-X
-
(1981)
Nucl. Phys. B
, vol.190
, pp. 1
-
-
Symanzik, K.1
-
11
-
-
0019931021
-
-
10.1051/jphys:0198200430101500
-
E. Brézin, J. Phys. (Paris) 43, 15 (1982). 10.1051/jphys: 0198200430101500
-
(1982)
J. Phys. (Paris)
, vol.43
, pp. 15
-
-
Brézin, E.1
-
14
-
-
0001315226
-
-
edited by C. Domb and J. L. Lebowitz (Academic, London
-
M. N. Barber, in Phase Transitions and Critical Phenomena, edited by, C. Domb, and, J. L. Lebowitz, (Academic, London, 1983), Vol. 8, pp. 145-266.
-
(1983)
Phase Transitions and Critical Phenomena
, vol.8
, pp. 145-266
-
-
Barber, M.N.1
-
17
-
-
0003440273
-
-
International Series of Monographs on Physics, 4th ed. (Oxford University Press, Oxford
-
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics, 4th ed. (Oxford University Press, Oxford, 2002).
-
(2002)
Quantum Field Theory and Critical Phenomena
-
-
Zinn-Justin, J.1
-
18
-
-
0011546664
-
-
10.1016/0550-3213(87)90152-0
-
Y. Y. Goldschmidt, Nucl. Phys. B 280, 340 (1987). 10.1016/0550-3213(87) 90152-0
-
(1987)
Nucl. Phys. B
, vol.280
, pp. 340
-
-
Goldschmidt, Y.Y.1
-
19
-
-
0011545469
-
-
10.1016/0550-3213(87)90153-2
-
J. C. Niél and J. Zinn-Justin, Nucl. Phys. B 280, 355 (1987). 10.1016/0550-3213(87)90153-2
-
(1987)
Nucl. Phys. B
, vol.280
, pp. 355
-
-
Niél, J.C.1
Zinn-Justin, J.2
-
22
-
-
84956097144
-
-
10.1088/0031-8949/1993/T49A/007
-
V. Dohm, Phys. Scr. T T49A, 46 (1993). 10.1088/0031-8949/1993/T49A/007
-
(1993)
Phys. Scr. T
, vol.49
, pp. 46
-
-
Dohm, V.1
-
23
-
-
33846400070
-
-
10.1103/RevModPhys.79.1
-
M. Barmatz, I. Hahn, J. A. Lipa, and R. V. Duncan, Rev. Mod. Phys. 79, 1 (2007). 10.1103/RevModPhys.79.1
-
(2007)
Rev. Mod. Phys.
, vol.79
, pp. 1
-
-
Barmatz, M.1
Hahn, I.2
Lipa, J.A.3
Duncan, R.V.4
-
24
-
-
2542483003
-
-
10.1103/PhysRevA.31.2570
-
M. Calvo and R. A. Ferrell, Phys. Rev. A 31, 2570 (1985). 10.1103/PhysRevA.31.2570
-
(1985)
Phys. Rev. A
, vol.31
, pp. 2570
-
-
Calvo, M.1
Ferrell, R.A.2
-
25
-
-
33747002377
-
-
10.1103/PhysRevA.31.2588
-
M. Calvo, Phys. Rev. A 31, 2588 (1985). 10.1103/PhysRevA.31.2588
-
(1985)
Phys. Rev. A
, vol.31
, pp. 2588
-
-
Calvo, M.1
-
26
-
-
0003130064
-
-
10.1103/PhysRevLett.77.1524
-
J. K. Bhattacharjee, Phys. Rev. Lett. 77, 1524 (1996). 10.1103/PhysRevLett.77.1524
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 1524
-
-
Bhattacharjee, J.K.1
-
29
-
-
0348106080
-
-
10.1016/0550-3213(87)90352-X
-
Y. Y. Goldschmidt, Nucl. Phys. B 285, 519 (1987). 10.1016/0550-3213(87) 90352-X
-
(1987)
Nucl. Phys. B
, vol.285
, pp. 519
-
-
Goldschmidt, Y.Y.1
-
30
-
-
2542612276
-
-
Advances in Solid State Physics Vol. edited by P. Grosse Vieweg, Braunschweig
-
H. W. Diehl and S. Dietrich, in Festkörperprobleme, Advances in Solid State Physics Vol. 25, edited by, P. Grosse, (Vieweg, Braunschweig, 1985), pp. 39-52.
-
(1985)
Festkörperprobleme
, vol.25
, pp. 39-52
-
-
Diehl, H.W.1
Dietrich, S.2
-
31
-
-
3843138721
-
-
10.1103/PhysRevLett.62.1864
-
D. Frank and V. Dohm, Phys. Rev. Lett. 62, 1864 (1989). 10.1103/PhysRevLett.62.1864
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 1864
-
-
Frank, D.1
Dohm, V.2
-
38
-
-
5844326958
-
-
10.1103/PhysRevB.49.2846
-
H. W. Diehl, Phys. Rev. B 49, 2846 (1994). 10.1103/PhysRevB.49.2846
-
(1994)
Phys. Rev. B
, vol.49
, pp. 2846
-
-
Diehl, H.W.1
-
41
-
-
0030574914
-
-
10.1016/0550-3213(96)00012-0
-
U. Ritschel and H. W. Diehl, Nucl. Phys. B 464, 512 (1996). 10.1016/0550-3213(96)00012-0
-
(1996)
Nucl. Phys. B
, vol.464
, pp. 512
-
-
Ritschel, U.1
Diehl, H.W.2
-
42
-
-
0035426303
-
-
10.1016/S0378-4371(01)00099-1
-
M. Krech, H. Karl, and H. W. Diehl, Physica A 297, 64 (2001). 10.1016/S0378-4371(01)00099-1
-
(2001)
Physica A
, vol.297
, pp. 64
-
-
Krech, M.1
Karl, H.2
Diehl, H.W.3
-
44
-
-
34347348014
-
-
10.1103/PhysRevE.75.051603
-
M. V. Manias, A. De Virgiliis, E. V. Albano, M. Müller, and K. Binder, Phys. Rev. E 75, 051603 (2007). 10.1103/PhysRevE.75.051603
-
(2007)
Phys. Rev. e
, vol.75
, pp. 051603
-
-
Manias, M.V.1
De Virgiliis, A.2
Albano, E.V.3
Müller, M.4
Binder, K.5
-
45
-
-
18344390320
-
-
10.1103/PhysRevE.63.026103
-
H. Chamati and N. S. Tonchev, Phys. Rev. E 63, 026103 (2001). 10.1103/PhysRevE.63.026103
-
(2001)
Phys. Rev. e
, vol.63
, pp. 026103
-
-
Chamati, H.1
Tonchev, N.S.2
-
47
-
-
43949123609
-
-
10.1103/PhysRevB.77.184416
-
H. Chamati and E. Korutcheva, Phys. Rev. B 77, 184416 (2008). 10.1103/PhysRevB.77.184416
-
(2008)
Phys. Rev. B
, vol.77
, pp. 184416
-
-
Chamati, H.1
Korutcheva, E.2
-
48
-
-
53149101319
-
-
10.1140/epjb/e2008-00043-y
-
A. Gambassi, Eur. Phys. J. B 64, 379 (2008). 10.1140/epjb/e2008-00043-y
-
(2008)
Eur. Phys. J. B
, vol.64
, pp. 379
-
-
Gambassi, A.1
-
50
-
-
0001856561
-
-
edited by C. Domb and J. L. Lebowitz (Academic, London
-
K. Binder, in Phase Transitions and Critical Phenomena, edited by, C. Domb, and, J. L. Lebowitz, (Academic, London, 1983), Vol. 8, pp. 1-144.
-
(1983)
Phase Transitions and Critical Phenomena
, vol.8
, pp. 1-144
-
-
Binder, K.1
-
51
-
-
29444437932
-
-
10.1103/PhysRevA.46.1886
-
M. Krech and S. Dietrich, Phys. Rev. A 46, 1886 (1992). 10.1103/PhysRevA.46.1886
-
(1992)
Phys. Rev. A
, vol.46
, pp. 1886
-
-
Krech, M.1
Dietrich, S.2
-
53
-
-
41449114240
-
-
10.1103/PhysRevB.77.115409
-
D. Grüneberg and H. W. Diehl, Phys. Rev. B 77, 115409 (2008). 10.1103/PhysRevB.77.115409
-
(2008)
Phys. Rev. B
, vol.77
, pp. 115409
-
-
Grüneberg, D.1
Diehl, H.W.2
-
54
-
-
0000971727
-
-
10.1103/PhysRevB.55.142
-
S. Sachdev, Phys. Rev. B 55, 142 (1997). 10.1103/PhysRevB.55.142
-
(1997)
Phys. Rev. B
, vol.55
, pp. 142
-
-
Sachdev, S.1
-
55
-
-
0000010252
-
-
10.1007/BF01316547
-
H.-K. Janssen, Z. Phys. B 23, 377 (1976). 10.1007/BF01316547
-
(1976)
Z. Phys. B
, vol.23
, pp. 377
-
-
Janssen, H.-K.1
-
57
-
-
0000268707
-
-
edited by G. Györgyi, L. Sasvári, and World Scientific, Singapore, T. Tel (I. Kondor
-
H. K. Janssen, in From Phase Transitions to Chaos, edited by, G. Györgyi, I. Kondor, L. Sasvári, and, T. Tel, (World Scientific, Singapore, 1992), pp. 68-91.
-
(1992)
From Phase Transitions to Chaos
, pp. 68-91
-
-
Janssen, H.K.1
-
58
-
-
41349086617
-
-
10.1103/PhysRevE.66.016102;
-
X. S. Chen and V. Dohm, Phys. Rev. E 66, 016102 (2002) 10.1103/PhysRevE.66.016102
-
(2002)
Phys. Rev. e
, vol.66
, pp. 016102
-
-
Chen, X.S.1
Dohm, V.2
-
59
-
-
33646976121
-
-
10.1103/PhysRevE.66.059901
-
X. S. Chen and V. Dohm, Phys. Rev. E 66, 059901 (E) (2002). 10.1103/PhysRevE.66.059901
-
(2002)
Phys. Rev. e
, vol.66
, pp. 059901
-
-
Chen, X.S.1
Dohm, V.2
-
60
-
-
45849097607
-
-
10.1103/PhysRevE.77.061128
-
V. Dohm, Phys. Rev. E 77, 061128 (2008). 10.1103/PhysRevE.77.061128
-
(2008)
Phys. Rev. e
, vol.77
, pp. 061128
-
-
Dohm, V.1
-
64
-
-
63249086174
-
-
Form 2.4 of the action J involving is obtained directly if one keeps carefully track of the boundary contributions to δH= ∫V { δφ [- 2 + τ· + (u· /3!) φ2] φ } + ∫B δφ (c· - n) φ when going over from the Langevin equation to the Langrangian formulation. Rewriting the term ∫B φ in terms of ∫B (- 2) φ requires an integration by parts, which produces the boundary contribution ∫B (- n) φ. This contributes to the boundary terms of the classical equations of motion which yield the boundary conditions given in Eq. 2.12. The form of the action given in Eq. (10) of Ref. is consistent with our Eq. 2.4 provided contributions δ (z) and δ (z-L) are included in the functional derivative δH/δφ that yield the boundary terms ∫ Bj (c· j - n) φ. For details, see Refs.
-
Form 2.4 of the action J involving is obtained directly if one keeps carefully track of the boundary contributions to δH= ∫V { δφ [- 2 + τ· + (u· /3!) φ2] φ } + ∫B δφ (c· - n) φ when going over from the Langevin equation to the Langrangian formulation. Rewriting the term ∫B φ in terms of ∫B (- 2) φ requires an integration by parts, which produces the boundary contribution ∫B (- n) φ. This contributes to the boundary terms of the classical equations of motion which yield the boundary conditions given in Eq. 2.12. The form of the action given in Eq. (10) of Ref. is consistent with our Eq. 2.4 provided contributions δ (z) and δ (z-L) are included in the functional derivative δH/δφ that yield the boundary terms ∫ Bj (c· j - n) φ. For details, see Refs..
-
-
-
-
65
-
-
0037040145
-
-
10.1088/0305-4470/35/5/312
-
A. Romeo and A. A. Saharian, J. Phys. A 35, 1297 (2002). 10.1088/0305-4470/35/5/312
-
(2002)
J. Phys. A
, vol.35
, pp. 1297
-
-
Romeo, A.1
Saharian, A.A.2
-
66
-
-
0039466352
-
-
Universität Duisburg, Essen
-
F. M. Schmidt, Diplomarbeit (Universität Duisburg, Essen, 2008).
-
(2008)
Diplomarbeit
-
-
Schmidt, F.M.1
-
67
-
-
51149100133
-
-
10.1103/PhysRevLett.101.100601
-
F. M. Schmidt and H. W. Diehl, Phys. Rev. Lett. 101, 100601 (2008). 10.1103/PhysRevLett.101.100601
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 100601
-
-
Schmidt, F.M.1
Diehl, H.W.2
-
69
-
-
0000671248
-
-
10.1103/PhysRevB.24.2878
-
H. W. Diehl and S. Dietrich, Phys. Rev. B 24, 2878 (1981). 10.1103/PhysRevB.24.2878
-
(1981)
Phys. Rev. B
, vol.24
, pp. 2878
-
-
Diehl, H.W.1
Dietrich, S.2
-
71
-
-
33645078207
-
-
10.1103/PhysRevB.10.2818
-
M. E. Fisher and A. Aharony, Phys. Rev. B 10, 2818 (1974). 10.1103/PhysRevB.10.2818
-
(1974)
Phys. Rev. B
, vol.10
, pp. 2818
-
-
Fisher, M.E.1
Aharony, A.2
-
72
-
-
84967389227
-
-
3rd ed. (World Scientific, Singapore
-
D. J. Amit and V. Martin-Mayor, Field Theory, The Renormalization Group, and Critical Phenomena, 3rd ed. (World Scientific, Singapore, 2005).
-
(2005)
Field Theory, the Renormalization Group, and Critical Phenomena
-
-
Amit, D.J.1
Martin-Mayor, V.2
-
75
-
-
18744397953
-
-
10.1088/0305-4470/14/9/041
-
I. D. Lawrie, J. Phys. A 14, 2489 (1981). 10.1088/0305-4470/14/9/041
-
(1981)
J. Phys. A
, vol.14
, pp. 2489
-
-
Lawrie, I.D.1
-
76
-
-
0000128160
-
-
10.1103/PhysRev.176.655
-
R. B. Griffiths, Phys. Rev. 176, 655 (1968). 10.1103/PhysRev.176.655
-
(1968)
Phys. Rev.
, vol.176
, pp. 655
-
-
Griffiths, R.B.1
-
79
-
-
4243380817
-
-
10.1103/PhysRevLett.67.1055.2
-
M. Krech and S. Dietrich, Phys. Rev. Lett. 67, 1055 (E) (1991). 10.1103/PhysRevLett.67.1055.2
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 1055
-
-
Krech, M.1
Dietrich, S.2
-
81
-
-
63249108691
-
-
For background on the thermodynamic Casimir effect and further references, see Ref..
-
For background on the thermodynamic Casimir effect and further references, see Ref..
-
-
-
-
83
-
-
34648817143
-
-
10.1103/PhysRevE.76.030601
-
R. Zandi, A. Shackell, J. Rudnick, M. Kardar, and L. P. Chayes, Phys. Rev. E 76, 030601 (2007). 10.1103/PhysRevE.76.030601
-
(2007)
Phys. Rev. e
, vol.76
, pp. 030601
-
-
Zandi, R.1
Shackell, A.2
Rudnick, J.3
Kardar, M.4
Chayes, L.P.5
-
85
-
-
63249096449
-
-
Unfortunately, Landau theory predicts for this n=2 component case that a transition to a phase with long-range order occurs for finite thickness L at a shifted temperature Tc,L < Tc,∞. However, for finite L and n=2, one rather expects a transition to a low-temperature phase with quasi-long-range order. Moreover, the minimum of the (much too deep) dip that Landau theory yields is located precisely in the temperature regime where a transition to a phase with long-range order is erroneously predicted. Evidently, Landau theory can hardly be trusted in this regime. It fails both quantitatively by predicting a much too deep dip as well as qualitatively, giving the usual power-law singularities for the finite-size susceptibility and a jump singularity for the second temperature derivative of the excess free energy per area. Recent Monte Carlo work (Refs.) does not suffer from such problems.
-
RG-improved Landau theory was used in Ref. to explain the dip in the measured thickness dependence of He wetting layers (Ref.). Unfortunately, Landau theory predicts for this n=2 component case that a transition to a phase with long-range order occurs for finite thickness L at a shifted temperature Tc,L < Tc,∞. However, for finite L and n=2, one rather expects a transition to a low-temperature phase with quasi-long-range order. Moreover, the minimum of the (much too deep) dip that Landau theory yields is located precisely in the temperature regime where a transition to a phase with long-range order is erroneously predicted. Evidently, Landau theory can hardly be trusted in this regime. It fails both quantitatively by predicting a much too deep dip as well as qualitatively, giving the usual power-law singularities for the finite-size susceptibility and a jump singularity for the second temperature derivative of the excess free energy per area. Recent Monte Carlo work (Refs.) does not suffer from such problems.
-
RG-improved Landau theory was used in Ref. to explain the dip in the measured thickness dependence of He wetting layers (Ref.).
-
-
-
87
-
-
35948966033
-
-
10.1103/PhysRevLett.99.185301
-
A. Hucht, Phys. Rev. Lett. 99, 185301 (2007). 10.1103/PhysRevLett.99. 185301
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 185301
-
-
Hucht, A.1
-
88
-
-
78951496078
-
-
10.1209/0295-5075/80/60009
-
O. Vasilyev, A. Gambassi, A. Maciołek, and S. Dietrich, EPL 80, 60009 (2007). 10.1209/0295-5075/80/60009
-
(2007)
EPL
, vol.80
, pp. 60009
-
-
Vasilyev, O.1
Gambassi, A.2
MacIołek, A.3
Dietrich, S.4
-
89
-
-
63249135713
-
-
The functions Qd,2 are encountered also in the analysis of the quantum spherical model; see Ref..
-
The functions Qd,2 are encountered also in the analysis of the quantum spherical model; see Ref..
-
-
-
-
92
-
-
0002999348
-
-
10.1063/1.1666269
-
H. J. F. Knops, J. Math. Phys. 14, 1918 (1973). 10.1063/1.1666269
-
(1973)
J. Math. Phys.
, vol.14
, pp. 1918
-
-
Knops, H.J.F.1
-
93
-
-
54749085482
-
-
For a recent analysis of conventional mean spherical models under various free boundary conditions, see 10.1088/1751-8113/41/37/375002
-
For a recent analysis of conventional mean spherical models under various free boundary conditions, see H. Chamati, J. Phys. A: Math. Theor. 41, 375002 (2008) and its references. 10.1088/1751-8113/41/37/375002
-
(2008)
J. Phys. A: Math. Theor.
, vol.41
, pp. 375002
-
-
Chamati, H.1
-
94
-
-
63249099822
-
-
Note that there is a misprint in the second part of Eq. (4.72) of Ref.: the argument of the exponential function under the square root should be ř∞ rather than ř∞ /2.
-
Note that there is a misprint in the second part of Eq. (4.72) of Ref.: the argument of the exponential function under the square root should be ř∞ rather than ř∞ /2.
-
-
-
-
95
-
-
0003984846
-
-
Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge
-
M. Le Bellac, Thermal Field Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2004).
-
(2004)
Thermal Field Theory
-
-
Le Bellac, M.1
-
96
-
-
0032479678
-
-
10.1016/S0550-3213(98)00210-7
-
I. T. Drummond, R. R. Horgan, P. V. Landshoff, and A. Rebhan, Nucl. Phys. B 524, 579 (1998). 10.1016/S0550-3213(98)00210-7
-
(1998)
Nucl. Phys. B
, vol.524
, pp. 579
-
-
Drummond, I.T.1
Horgan, R.R.2
Landshoff, P.V.3
Rebhan, A.4
-
97
-
-
0034338666
-
-
See, e.g., 10.1209/epl/i2000-00130-3
-
See, e.g., G. Baym, J.-P. Blaizot, and J. Zinn-Justin, Europhys. Lett. 49, 150 (2000), and Ref.. 10.1209/epl/i2000-00130-3
-
(2000)
Europhys. Lett.
, vol.49
, pp. 150
-
-
Baym, G.1
Blaizot, J.-P.2
Zinn-Justin, J.3
-
101
-
-
63249113950
-
-
As discussed in Ref., the linear scaling field associated with the subleading long-range interaction is coupled beyond linear order to other linear scaling fields such as the one ∼ (u- u) associated with the usual Wegner-type corrections to scaling. This coupling implies a mixing of these irrelevant scaling fields whereby the nonlinear scaling field associated with the latter corrections to scaling acquires a dependence on the strength of the subleading long-range interaction.
-
As discussed in Ref., the linear scaling field associated with the subleading long-range interaction is coupled beyond linear order to other linear scaling fields such as the one ∼ (u- u) associated with the usual Wegner-type corrections to scaling. This coupling implies a mixing of these irrelevant scaling fields whereby the nonlinear scaling field associated with the latter corrections to scaling acquires a dependence on the strength of the subleading long-range interaction.
-
-
-
-
102
-
-
5244316744
-
-
10.1021/ma50007a007
-
P. G. de Gennes, Macromolecules 14, 1637 (1981). 10.1021/ma50007a007
-
(1981)
Macromolecules
, vol.14
, pp. 1637
-
-
De Gennes, P.G.1
-
103
-
-
0037523583
-
-
10.1088/0022-3719/16/13/027
-
L. Peliti and S. Leibler, J. Phys. C 16, 2635 (1983). 10.1088/0022-3719/16/13/027
-
(1983)
J. Phys. C
, vol.16
, pp. 2635
-
-
Peliti, L.1
Leibler, S.2
-
104
-
-
4544371616
-
-
Academic, New York
-
I. M. Gel'fand and G. E. Shilov, Generalized Functions (Academic, New York, 1964), Vol. 1, pp. 1-423.
-
(1964)
Generalized Functions
, vol.1
, pp. 1-423
-
-
Gel'Fand, I.M.1
Shilov, G.E.2
-
105
-
-
0031075431
-
-
10.1103/PhysRevLett.78.1090;
-
A. Drewitz, R. Leidl, T. W. Burkhardt, and H. W. Diehl, Phys. Rev. Lett. 78, 1090 (1997) 10.1103/PhysRevLett.78.1090
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 1090
-
-
Drewitz, A.1
Leidl, R.2
Burkhardt, T.W.3
Diehl, H.W.4
-
106
-
-
0001563530
-
-
10.1103/PhysRevB.57.1908
-
R. Leidl and H. W. Diehl, Phys. Rev. B 57, 1908 (1998). 10.1103/PhysRevB.57.1908
-
(1998)
Phys. Rev. B
, vol.57
, pp. 1908
-
-
Leidl, R.1
Diehl, H.W.2
-
107
-
-
0001234893
-
-
10.1103/PhysRevLett.78.3880
-
S. Krimmel, W. Donner, B. Nickel, H. Dosch, C. Sutter, and G. Grübel, Phys. Rev. Lett. 78, 3880 (1997). 10.1103/PhysRevLett.78.3880
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 3880
-
-
Krimmel, S.1
Donner, W.2
Nickel, B.3
Dosch, H.4
Sutter, C.5
Grübel, G.6
-
108
-
-
63249126506
-
-
D. Dantchev and D. Grüneberg, Casimir force in O (n) lattice models with a diffuse interface (2008), http://www.citebase.org/abstract?id=oai:arXiv. org:0806.3718.
-
(2008)
-
-
Dantchev, D.1
Grüneberg, D.2
-
109
-
-
0003393811
-
-
For the definition of the Hurwitz zeta function see, e.g., Springer-Verlag, Berlin
-
For the definition of the Hurwitz zeta function see, e.g., W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer-Verlag, Berlin, 1966).
-
(1966)
Formulas and Theorems for the Special Functions of Mathematical Physics
-
-
Magnus, W.1
Oberhettinger, F.2
Soni, R.P.3
-
110
-
-
63249107887
-
-
MATHEMATICA, Version 6, Wolfram Research.
-
MATHEMATICA, Version 6, Wolfram Research.
-
-
-
|