메뉴 건너뛰기




Volumn 1, Issue , 2008, Pages 31-36

Prediction model of stock market returns based on wavelet neural network

Author keywords

[No Author keywords available]

Indexed keywords

ADJUSTMENT ALGORITHMS; BP NETWORKS; FINANCIAL SIGNALS; LEVENBERG-MARQUARDT ALGORITHMS; NON STATIONARIES; PREDICTION MODELS; RECONSTRUCTION ALGORITHMS; SHANGHAI STOCK MARKETS; SIGNAL FREQUENCIES; SIMULATION ERRORS; SIMULATION RESULTS; STOCK MARKETS; SUB BANDS; WAVELET NEURAL NETWORKS;

EID: 63149158082     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/PACIIA.2008.46     Document Type: Conference Paper
Times cited : (16)

References (10)
  • 1
    • 0001376652 scopus 로고
    • Nonlinear dynamics and stock return
    • Schekman J A, Lebaron B (1989). "Nonlinear dynamics and stock return". Journal of Business, vol.62, No.3, pp.311-317.
    • (1989) Journal of Business , vol.62 , Issue.3 , pp. 311-317
    • Schekman, J.A.1    Lebaron, B.2
  • 2
    • 0033329365 scopus 로고    scopus 로고
    • Recurrent artificial neural networks for forecasting of forward interest rates
    • Bouqata Bouchra (1999). "Recurrent artificial neural networks for forecasting of forward interest rates". Proceedings of the International Joint Conference on Neural Networks, vol.6, No.7, pp.3894-3897.
    • (1999) Proceedings of the International Joint Conference on Neural Networks , vol.6 , Issue.7 , pp. 3894-3897
    • Bouchra, B.1
  • 3
    • 0033340561 scopus 로고    scopus 로고
    • Neural network chaos and computational algorithms of forecast in finance
    • Man and Cybernetics
    • Algis Garliauskas (1999). "Neural network chaos and computational algorithms of forecast in finance". Proceedings of the IEEE International Conference on System, Man and Cybernetics, vol.2, pp.638-643.
    • (1999) Proceedings of the IEEE International Conference on System , vol.2 , pp. 638-643
    • Garliauskas, A.1
  • 4
    • 0036620104 scopus 로고    scopus 로고
    • Security Investment Prediction Based on Wavelet Analysis Theory
    • in Chinese
    • Zhang Qian, Gao Liqun (2002). "Security Investment Prediction Based on Wavelet Analysis Theory". Journal of Northeastern University (Natural Science), vol.23, No.6, pp.539-541 (in Chinese).
    • (2002) Journal of Northeastern University (Natural Science) , vol.23 , Issue.6 , pp. 539-541
    • Qian, Z.1    Gao, L.2
  • 5
    • 63149128616 scopus 로고    scopus 로고
    • Application of the Wavelet Neural Network in the Prediction of Stock Market
    • in Chinese
    • Yao Hongxing, Sheng Zhaohan (2002). "Application of the Wavelet Neural Network in the Prediction of Stock Market". Journal of Industrial Engineering Management, vol.16, No.2, pp.32-37 (in Chinese).
    • (2002) Journal of Industrial Engineering Management , vol.16 , Issue.2 , pp. 32-37
    • Yao, H.1    Zhaohan, S.2
  • 6
    • 3242809911 scopus 로고    scopus 로고
    • The method and application of time series prediction based wavelet neural network
    • in Chinese
    • Lv Shuping, Zhao Yongmei (2004). "The method and application of time series prediction based wavelet neural network". Journal of Harbin Engineering University, vol.25 No.2, pp.181-182 (in Chinese).
    • (2004) Journal of Harbin Engineering University , vol.25 , Issue.2 , pp. 181-182
    • Shuping, L.1    Zhao, Y.2
  • 8
    • 63149174204 scopus 로고    scopus 로고
    • Martin R, Heinrich B.A. A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. Ruspini H. Proceedings of the IEEE International Conference on Neural Networks (ICNN). IEEE Press, New York. 1993, 1, pp.586̃591.
    • Martin R, Heinrich B.A. "A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm". Ruspini H. Proceedings of the IEEE International Conference on Neural Networks (ICNN). IEEE Press, New York. 1993, vol.1, pp.586̃591.
  • 9
    • 63149168962 scopus 로고    scopus 로고
    • http://finance.cn.yahoo.com/
  • 10
    • 0028544395 scopus 로고    scopus 로고
    • Murata N, Yoshizawa S, Amari S (1997). Network's information criterion-determining the number of hidden units for an artificial neural network model. IEEE Trans, Neural Networks, 5, No.6, pp.865̃872.
    • Murata N, Yoshizawa S, Amari S (1997). "Network's information criterion-determining the number of hidden units for an artificial neural network model". IEEE Trans, Neural Networks, vol.5, No.6, pp.865̃872.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.