메뉴 건너뛰기




Volumn 9, Issue 3, 2009, Pages 521-527

Supply chain demand forecasting: A comparison of machine learning techniques and traditional methods

Author keywords

Artificial neural networks; Bullwhip effect; Demand forecasting; Support vector machine

Indexed keywords

ARTIFICIAL INTELLIGENCE; DEEP NEURAL NETWORKS; FORECASTING; LEARNING ALGORITHMS; NEURAL NETWORKS; SUPPLY CHAINS; SUPPORT VECTOR MACHINES;

EID: 63049134222     PISSN: 18125654     EISSN: 18125662     Source Type: Journal    
DOI: 10.3923/jas.2009.521.527     Document Type: Article
Times cited : (27)

References (30)
  • 1
    • 0142239490 scopus 로고    scopus 로고
    • Forecasting aggregate retail sales: A comparison of artificial neural networks and traditional method
    • Alon, I., Q. Min and R. Sadowski, 2001. Forecasting aggregate retail sales: A comparison of artificial neural networks and traditional method. J. Retailing Consumer Serv., 8: 147-156.
    • (2001) J. Retailing Consumer Serv , vol.8 , pp. 147-156
    • Alon, I.1    Min, Q.2    Sadowski, R.3
  • 2
    • 0015401407 scopus 로고
    • Forecasting and stock control for intermittent demands
    • Croston, J.D., 1972. Forecasting and stock control for intermittent demands. Operat. Res. Q., 23: 289-303.
    • (1972) Operat. Res. Q , vol.23 , pp. 289-303
    • Croston, J.D.1
  • 4
    • 63049135977 scopus 로고
    • How to forecast income statement items for auditing purposes
    • Dugan, M., K.A. Shriver and A. Peter, 1994. How to forecast income statement items for auditing purposes. J. Business Forecast., 13: 22-26.
    • (1994) J. Business Forecast , vol.13 , pp. 22-26
    • Dugan, M.1    Shriver, K.A.2    Peter, A.3
  • 5
    • 0026851662 scopus 로고
    • Neural network forecasting of short, noisy time series
    • Foster, B., F. Collopy and L. Ungar, 1992. Neural network forecasting of short, noisy time series. Comput. Chemical Eng., 16: 293-297.
    • (1992) Comput. Chemical Eng , vol.16 , pp. 293-297
    • Foster, B.1    Collopy, F.2    Ungar, L.3
  • 6
    • 0142239491 scopus 로고    scopus 로고
    • Recognizing changing seasonal patterns using artificial neural networks
    • Franses, P.H. and G. Draisma, 1997. Recognizing changing seasonal patterns using artificial neural networks. J. Econometrics, 81: 273-280.
    • (1997) J. Econometrics , vol.81 , pp. 273-280
    • Franses, P.H.1    Draisma, G.2
  • 7
    • 0039197827 scopus 로고    scopus 로고
    • Can we improve the perceived quality of economic forecasts
    • Granger, C.W.J., 1996. Can we improve the perceived quality of economic forecasts. J. Applied Econometrics, 11: 455-473.
    • (1996) J. Applied Econometrics , vol.11 , pp. 455-473
    • Granger, C.W.J.1
  • 8
    • 33646534830 scopus 로고    scopus 로고
    • Seasonal decomposition and forecasting of telecommunication data: A comparative case study
    • Hilas, C.S., S.K. Goudos and J.N. Sahalos, 2006. Seasonal decomposition and forecasting of telecommunication data: A comparative case study. Technological Forecast. Social Change, 73: 495-509.
    • (2006) Technological Forecast. Social Change , vol.73 , pp. 495-509
    • Hilas, C.S.1    Goudos, S.K.2    Sahalos, J.N.3
  • 9
    • 0000860595 scopus 로고    scopus 로고
    • Neural network models for time series forecasts
    • Hill, T., M. O'Connor and W. Remus, 1996. Neural network models for time series forecasts. Manage. Sci., 42: 1082-1092.
    • (1996) Manage. Sci , vol.42 , pp. 1082-1092
    • Hill, T.1    O'Connor, M.2    Remus, W.3
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., M. Stinchcombe and H.White, 1989. Multilayer feedforward networks are universal approximators. Neural Networks. 2: 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 11
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
    • Hornik, K., M. Stinchcombe and H. White, 1990. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Network, 3: 551-560.
    • (1990) Neural Network , vol.3 , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 12
    • 0037083314 scopus 로고    scopus 로고
    • A computerized causal forecasting system using genetic algorithms in supply chain management
    • Jeong, B., H. Jung and N. Park. 2002. A computerized causal forecasting system using genetic algorithms in supply chain management. J. Syst. Software, 60: 233-237.
    • (2002) J. Syst. Software , vol.60 , pp. 233-237
    • Jeong, B.1    Jung, H.2    Park, N.3
  • 13
    • 0001197352 scopus 로고    scopus 로고
    • Applications of artificial neural networks in management science: A survey
    • Krycha, K.A. and U. Wagner, 1999. Applications of artificial neural networks in management science: A survey. J. Retailing Consumer Serv., 6: 185-203.
    • (1999) J. Retailing Consumer Serv , vol.6 , pp. 185-203
    • Krycha, K.A.1    Wagner, U.2
  • 14
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D.J.C., 1992. Bayesian interpolation. Neural Computation, 4: 415-447.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 15
    • 0031375732 scopus 로고    scopus 로고
    • Mukherjee, S., E. Osuna and F. Girosi, 1997. Nonlinear prediction of chaotic time series using support vector machines. Paper presented at tht Proceedings of IEEE NNSP.
    • Mukherjee, S., E. Osuna and F. Girosi, 1997. Nonlinear prediction of chaotic time series using support vector machines. Paper presented at tht Proceedings of IEEE NNSP.
  • 18
    • 0003291196 scopus 로고
    • Forecasting practices in the retail industry
    • Peterson, R.T., 1993. Forecasting practices in the retail industry. J. Business Forecast., 12: 11-14.
    • (1993) J. Business Forecast , vol.12 , pp. 11-14
    • Peterson, R.T.1
  • 19
    • 0000103157 scopus 로고    scopus 로고
    • Financial Applications of Artificial Neural Networks
    • Maddala, G.S, Rao, C.R, Eds, North-Holland, Elsevier Science Publishers, Amsterdam, pp
    • Qi, M., 1996. Financial Applications of Artificial Neural Networks. In: Handbook of Statistics, Statistical Methods in Finance, Maddala, G.S., Rao, C.R. (Eds.). North-Holland, Elsevier Science Publishers, Amsterdam, pp: 529-552.
    • (1996) Handbook of Statistics, Statistical Methods in Finance , pp. 529-552
    • Qi, M.1
  • 20
    • 0033435319 scopus 로고    scopus 로고
    • Nonlinear predictability of stock returns using financial and economic variables
    • Qi, M., 1999. Nonlinear predictability of stock returns using financial and economic variables. J. Business Econ. Statis., 17: 419-429.
    • (1999) J. Business Econ. Statis , vol.17 , pp. 419-429
    • Qi, M.1
  • 21
    • 0001606625 scopus 로고    scopus 로고
    • Economic factors and the stock market: A new perspective
    • Qi, M. and G. S. Maddala, 1999. Economic factors and the stock market: A new perspective. J. Forecast., 18: 151-166.
    • (1999) J. Forecast , vol.18 , pp. 151-166
    • Qi, M.1    Maddala, G.S.2
  • 22
    • 4444290093 scopus 로고    scopus 로고
    • Support vector machines and learning about time
    • Paper presented at the
    • Ruping, S. and K. Morik, 2003. Support vector machines and learning about time. Paper presented at the Proceedings of ICASSP.
    • (2003) Proceedings of ICASSP
    • Ruping, S.1    Morik, K.2
  • 23
    • 0004393134 scopus 로고
    • Connectionist approach to time series prediction: An empirical test
    • Sharda, R. and R. Patil, 1992. Connectionist approach to time series prediction: An empirical test. J. Intelligent Manufact., 3: 317-323.
    • (1992) J. Intelligent Manufact , vol.3 , pp. 317-323
    • Sharda, R.1    Patil, R.2
  • 24
    • 0026258339 scopus 로고
    • Time series forecasting using neural networks vs. Box-Jenkins methodology
    • Tang, Z., C. De Almeida and P. Fishwick, 1990. Time series forecasting using neural networks vs. Box-Jenkins methodology. Simulation, 57: 303-310.
    • (1990) Simulation , vol.57 , pp. 303-310
    • Tang, Z.1    De Almeida, C.2    Fishwick, P.3
  • 26
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation and signal processing
    • Vapnik, V., S.E. Golowich and A. Smola, 1997. Support vector method for function approximation, regression estimation and signal processing. Adv. Neural Inform. Process. Syst., 9: 287-291.
    • (1997) Adv. Neural Inform. Process. Syst , vol.9 , pp. 287-291
    • Vapnik, V.1    Golowich, S.E.2    Smola, A.3
  • 27
    • 0003991806 scopus 로고    scopus 로고
    • 1st Edn. John Wiley and Sons, New York, ISBN: 0471030031
    • Vapnik, V.N., 1998. Statistical Learning Theory. 1st Edn. John Wiley and Sons, New York, ISBN: 0471030031.
    • (1998) Statistical Learning Theory
    • Vapnik, V.N.1
  • 28
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings
    • White, H., 1990. Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings. Neural Networks, 3: 535-549.
    • (1990) Neural Networks , vol.3 , pp. 535-549
    • White, H.1
  • 29
    • 4344688270 scopus 로고    scopus 로고
    • A new approach to forecasting intermittent demand for service parts inventories
    • Willemain, T.R., C.N. Smart and H.F. Schwarz, 2004. A new approach to forecasting intermittent demand for service parts inventories. Int. J. Forecast., 20: 375-387.
    • (2004) Int. J. Forecast , vol.20 , pp. 375-387
    • Willemain, T.R.1    Smart, C.N.2    Schwarz, H.F.3
  • 30
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • Zhang, G.P., B.E. Patuwo and M.Y. Hu, 1998. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast., 14: 35-62.
    • (1998) Int. J. Forecast , vol.14 , pp. 35-62
    • Zhang, G.P.1    Patuwo, B.E.2    Hu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.