메뉴 건너뛰기




Volumn , Issue , 2008, Pages 271-284

Adaptive shared-state sampling

Author keywords

Frequent items; Heavy hitters; Sampling; Scalability

Indexed keywords

EMPIRICAL RESULTS; FREQUENT ITEMS; HEAVY-HITTERS; HIGH PROBABILITIES; MALICIOUS TRAFFICS; PERFORMANCE GUARANTEES; REAL TRAFFICS; SOFTWARE IMPLEMENTATIONS; TRAFFIC MIXES;

EID: 63049105894     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1452520.1452552     Document Type: Conference Paper
Times cited : (12)

References (16)
  • 1
    • 84869247371 scopus 로고    scopus 로고
    • Internet Measurement Data Catalog
    • Internet Measurement Data Catalog, www.datcat.org.
  • 2
    • 3142749702 scopus 로고    scopus 로고
    • Approximate counts and quantiles over sliding windows
    • New York, NY, USA, ACM
    • A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding windows. In Proceedings of ACM SIGMOD-SIGACT-SIGART, pages 286-296, New York, NY, USA, 2004. ACM.
    • (2004) Proceedings of ACM SIGMOD-SIGACT-SIGART , pp. 286-296
    • Arasu, A.1    Manku, G.S.2
  • 4
    • 14844367057 scopus 로고    scopus 로고
    • An improved data stream summary: The count-min sketch and its applications
    • G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications. Journal of Algorithms, 55:58-75, 2003.
    • (2003) Journal of Algorithms , vol.55 , pp. 58-75
    • Cormode, G.1    Muthukrishnan, S.2
  • 5
    • 23944436942 scopus 로고    scopus 로고
    • What's hot and what's notitracking most frequent items dynamically
    • G. Cormode and S. Muthukrishnan. What's hot and what's notitracking most frequent items dynamically. In ACM TODS, pages 249-278, 2005.
    • (2005) ACM TODS , pp. 249-278
    • Cormode, G.1    Muthukrishnan, S.2
  • 6
    • 49049087701 scopus 로고    scopus 로고
    • Probabilistic lossy counting: A,n efficient algorithm for finding heavy hitters
    • X. Dimitropoulos, P. Hurley, and A. Kind. Probabilistic lossy counting: a,n efficient algorithm for finding heavy hitters. SIGCOMM Comput. Commun. Rev., 38(1):5-5, 2008.
    • (2008) SIGCOMM Comput. Commun. Rev , vol.38 , Issue.1 , pp. 5-5
    • Dimitropoulos, X.1    Hurley, P.2    Kind, A.3
  • 7
    • 2442583610 scopus 로고    scopus 로고
    • New directions in traffic measurement and accounting: Focusing on the elephants, ignoring the mice. ACAi
    • C. Estan and G. Varghese. New directions in traffic measurement and accounting: Focusing on the elephants, ignoring the mice. ACAi TOCS, 21(3):270-313, 2003.
    • (2003) TOCS , vol.21 , Issue.3 , pp. 270-313
    • Estan, C.1    Varghese, G.2
  • 10
    • 0348252034 scopus 로고    scopus 로고
    • A simple algorithm for finding frequent elements in streams and bags
    • R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple algorithm for finding frequent elements in streams and bags. ACM Trans. Database Syst., 28(1):51-55, 2003.
    • (2003) ACM Trans. Database Syst , vol.28 , Issue.1 , pp. 51-55
    • Karp, R.M.1    Shenker, S.2    Papadimitriou, C.H.3
  • 11
    • 2442443820 scopus 로고    scopus 로고
    • Approximate frequency counts over data streams
    • VLDB Endowment
    • G. S. Manku and R. Motwani. Approximate frequency counts over data streams. In VLDB '02, pages 346-357. VLDB Endowment, 2002.
    • (2002) VLDB '02 , pp. 346-357
    • Manku, G.S.1    Motwani, R.2
  • 12
    • 84869247366 scopus 로고    scopus 로고
    • NLANR. http://pma.nlanr.net/traces/.
  • 13
    • 63049131764 scopus 로고    scopus 로고
    • F. Raspall and S. Salient. Shared-State Sampling, technical report; av. at http://147.83.113.45/s3tr.pdf.
    • F. Raspall and S. Salient. Shared-State Sampling, technical report; av. at http://147.83.113.45/s3tr.pdf.
  • 16
    • 0002663971 scopus 로고    scopus 로고
    • Sampling large databases for association rules
    • H. Toivonen. Sampling large databases for association rules. In VLDB '96, 1996.
    • (1996) VLDB '96
    • Toivonen, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.