메뉴 건너뛰기




Volumn 28, Issue 3, 2009, Pages 510-524

A penalized likelihood approach for mixture cure models

Author keywords

Mixture cure models; Penalized likelihood; Risk function; Splines; Survival analysis

Indexed keywords

ADULT; ARTICLE; CANCER RECURRENCE; CANCER SURVIVAL; CONTROLLED STUDY; FEMALE; HUMAN; MAJOR CLINICAL STUDY; MALE; MATHEMATICAL COMPUTING; PARAMETRIC TEST; PENALIZED LIKELIHOOD ANALYSIS; SIMULATION; SQUAMOUS CELL CARCINOMA; STATISTICAL ANALYSIS; STATISTICAL MODEL; TONSIL CANCER; DISEASE FREE SURVIVAL; EPIDEMIOLOGY; SURVIVAL; THEORETICAL MODEL;

EID: 63049102036     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.3481     Document Type: Article
Times cited : (41)

References (31)
  • 2
    • 0021148812 scopus 로고
    • Survivorship analysis when cure is a possibility: A Monte Carlo study
    • Goldman AI. Survivorship analysis when cure is a possibility: a Monte Carlo study. Statistics in Medicine 1984; 3:153-163.
    • (1984) Statistics in Medicine , vol.3 , pp. 153-163
    • Goldman, A.I.1
  • 3
    • 38149146299 scopus 로고
    • Exponential mixture models with long-term survivors and covariates
    • Ghitany ME, Maller RA, Zhou S. Exponential mixture models with long-term survivors and covariates. Journal of Multivariate Analysis 1994; 49:2 18-241.
    • (1994) Journal of Multivariate Analysis , vol.49 , Issue.2 , pp. 18-241
    • Ghitany, M.E.1    Maller, R.A.2    Zhou, S.3
  • 4
    • 0003015528 scopus 로고
    • Maximum likelihood estimates of the proportion of patients cured by cancer therapy
    • Boag JW. Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society, Series B 1949; 11:15-44.
    • (1949) Journal of the Royal Statistical Society, Series B , vol.11 , pp. 15-44
    • Boag, J.W.1
  • 5
    • 0030764488 scopus 로고    scopus 로고
    • Comparison of parametric and non-parametric survival methods using simulated clinical data
    • Gamel JW, Vogel RL. Comparison of parametric and non-parametric survival methods using simulated clinical data. Statistics in Medicine 1997; 16:1629-1643.
    • (1997) Statistics in Medicine , vol.16 , pp. 1629-1643
    • Gamel, J.W.1    Vogel, R.L.2
  • 6
    • 0020387435 scopus 로고
    • The use of mixture models for the analysis of survival data with long-term survivors
    • Farewell VT. The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 1982; 38:1041-1046.
    • (1982) Biometrics , vol.38 , pp. 1041-1046
    • Farewell, V.T.1
  • 7
    • 0025046028 scopus 로고
    • Application of the theory of finite mixtures for the estimation of 'cure' rates of treated cancer patients
    • Gordon NH. Application of the theory of finite mixtures for the estimation of 'cure' rates of treated cancer patients. Statistics in Medicine 1990; 9:397-407.
    • (1990) Statistics in Medicine , vol.9 , pp. 397-407
    • Gordon, N.H.1
  • 8
    • 0026579632 scopus 로고
    • Parametric versus non-parametric methods for estimating cure rates based on censored survival data
    • Cantor AB, Shuster JJ. Parametric versus non-parametric methods for estimating cure rates based on censored survival data. Statistics in Medicine 1992; 11:931-937.
    • (1992) Statistics in Medicine , vol.11 , pp. 931-937
    • Cantor, A.B.1    Shuster, J.J.2
  • 9
    • 3342978742 scopus 로고    scopus 로고
    • A new parametric model for survival data with long-terms survivors
    • Shao Q, Zhou X. A new parametric model for survival data with long-terms survivors. Statistics in Medicine 2004; 23:3525-3543.
    • (2004) Statistics in Medicine , vol.23 , pp. 3525-3543
    • Shao, Q.1    Zhou, X.2
  • 10
    • 0032580317 scopus 로고    scopus 로고
    • A generalized F mixture model for cure rate estimation
    • Peng Y, Dear KB, Denham JW. A generalized F mixture model for cure rate estimation. Statistics in Medicine 1998; 17:813-830.
    • (1998) Statistics in Medicine , vol.17 , pp. 813-830
    • Peng, Y.1    Dear, K.B.2    Denham, J.W.3
  • 12
    • 0001356210 scopus 로고
    • A mixture model combining logistic regression with proportional hazards regression
    • Kuk AYC, Chen C. A mixture model combining logistic regression with proportional hazards regression. Biometrika 1992; 79:531-541.
    • (1992) Biometrika , vol.79 , pp. 531-541
    • Kuk, A.Y.C.1    Chen, C.2
  • 13
    • 0029129572 scopus 로고
    • Semi-parametric estimation in failure time mixture models
    • Taylor JMG. Semi-parametric estimation in failure time mixture models. Biometrics 1995; 51:899-907.
    • (1995) Biometrics , vol.51 , pp. 899-907
    • Taylor, J.M.G.1
  • 14
    • 0034060858 scopus 로고    scopus 로고
    • A nonparametric mixture model for cure rate estimation
    • Peng Y, Dear KB. A nonparametric mixture model for cure rate estimation. Biometrics 2000; 56:237-243.
    • (2000) Biometrics , vol.56 , pp. 237-243
    • Peng, Y.1    Dear, K.B.2
  • 15
    • 0035953442 scopus 로고    scopus 로고
    • Standard errors for the Cox proportional hazards cure model
    • Sy JP, Taylor JMG. Standard errors for the Cox proportional hazards cure model. Mathematical and Computer Modelling 2001; 33:1237-1251.
    • (2001) Mathematical and Computer Modelling , vol.33 , pp. 1237-1251
    • Sy, J.P.1    Taylor, J.M.G.2
  • 16
    • 0034021942 scopus 로고    scopus 로고
    • Estimation in a Cox proportional hazards cure model
    • Sy JP, Taylor JMG. Estimation in a Cox proportional hazards cure model. Biometrics 2000; 56:227-236.
    • (2000) Biometrics , vol.56 , pp. 227-236
    • Sy, J.P.1    Taylor, J.M.G.2
  • 17
    • 0037454090 scopus 로고    scopus 로고
    • Estimating baseline distribution in proportional hazards cure models
    • Peng Y. Estimating baseline distribution in proportional hazards cure models. Computational Statistics and Data Analysis 2003; 42:187-201.
    • (2003) Computational Statistics and Data Analysis , vol.42 , pp. 187-201
    • Peng, Y.1
  • 18
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • Eilers PHC, Marx BD. Flexible smoothing with B-splines and penalties. Statistical Science 1996; 11:89-121.
    • (1996) Statistical Science , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 19
    • 0031919926 scopus 로고    scopus 로고
    • A penalized likelihood approach for arbitrarily censored and truncated data: Application to age-specific incidence of dementia
    • Joly P, Commenges D, Letenneur L. A penalized likelihood approach for arbitrarily censored and truncated data: application to age-specific incidence of dementia. Biometrics 1998; 54:185-194.
    • (1998) Biometrics , vol.54 , pp. 185-194
    • Joly, P.1    Commenges, D.2    Letenneur, L.3
  • 20
    • 0347867151 scopus 로고    scopus 로고
    • A penalized likelihood approach for an illness-death model with interval-censored data: Application to age-specific incidence of dementia
    • Joly P, Commenges D, Helmer C, Letenneur L. A penalized likelihood approach for an illness-death model with interval-censored data: application to age-specific incidence of dementia. Biostatistics 2002; 3:433-443.
    • (2002) Biostatistics , vol.3 , pp. 433-443
    • Joly, P.1    Commenges, D.2    Helmer, C.3    Letenneur, L.4
  • 21
    • 21044436007 scopus 로고    scopus 로고
    • Estimating the proportion of cured patients in a censored sample
    • Lam KF, Fong DY, Tang OY. Estimating the proportion of cured patients in a censored sample. Statistics in Medicine 2005; 24:1865-1879.
    • (2005) Statistics in Medicine , vol.24 , pp. 1865-1879
    • Lam, K.F.1    Fong, D.Y.2    Tang, O.Y.3
  • 22
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics 1963; 11:431-441.
    • (1963) SIAM Journal on Applied Mathematics , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 23
    • 33847411839 scopus 로고    scopus 로고
    • Choice between semi-parametric estimators of Markov and non-Markov multi-state models from coarsened observations
    • Commenges D, Joly P, Gégout-Petit A, Liquet B. Choice between semi-parametric estimators of Markov and non-Markov multi-state models from coarsened observations. Scandinavian Journal of Statistics 2007; 34:33-54.
    • (2007) Scandinavian Journal of Statistics , vol.34 , pp. 33-54
    • Commenges, D.1    Joly, P.2    Gégout-Petit, A.3    Liquet, B.4
  • 24
    • 0028819716 scopus 로고    scopus 로고
    • Withers HR, Peters LJ, Taylor JMG, Owen JB, Morrison WH, Schultheiss TE, Keane T, O Sullivan B, van Dyk J, Gupta N, Wang CC, Jones CU, Doppke KP, Myint S, Thompson M, Parsons JT, Mendenhall WM, Dische S, Aird EGA, Henk JM, Bidmead MAM, Svoboda V, Chan Y, Hanlon AL, Peters TL, Hanks GE. Local control of carcinoma of the tonsil by radiation therapy: an analysis of patterns of fractionation in nine institutions. International Journal of Radiation Oncology, Biology, Physics 1995; 33:549-562.
    • Withers HR, Peters LJ, Taylor JMG, Owen JB, Morrison WH, Schultheiss TE, Keane T, O Sullivan B, van Dyk J, Gupta N, Wang CC, Jones CU, Doppke KP, Myint S, Thompson M, Parsons JT, Mendenhall WM, Dische S, Aird EGA, Henk JM, Bidmead MAM, Svoboda V, Chan Y, Hanlon AL, Peters TL, Hanks GE. Local control of carcinoma of the tonsil by radiation therapy: an analysis of patterns of fractionation in nine institutions. International Journal of Radiation Oncology, Biology, Physics 1995; 33:549-562.
  • 25
    • 0037110528 scopus 로고    scopus 로고
    • A semi-parametric accelerated failure time cure model
    • Li CS, Taylor JMG. A semi-parametric accelerated failure time cure model. Statistics in Medicine 2002; 21:3235-3247.
    • (2002) Statistics in Medicine , vol.21 , pp. 3235-3247
    • Li, C.S.1    Taylor, J.M.G.2
  • 26
    • 34347391676 scopus 로고    scopus 로고
    • A new estimation method for the semiparametric accelerated failure time mixture cure model
    • Zhang J, Peng Y. A new estimation method for the semiparametric accelerated failure time mixture cure model. Statistics in Medicine 2006; 26:3157-3171.
    • (2006) Statistics in Medicine , vol.26 , pp. 3157-3171
    • Zhang, J.1    Peng, Y.2
  • 27
    • 0023738069 scopus 로고
    • Heterogeneity in survival analysis
    • Aalen OO. Heterogeneity in survival analysis. Statistics in Medicine 1988; 7:1121-1137.
    • (1988) Statistics in Medicine , vol.7 , pp. 1121-1137
    • Aalen, O.O.1
  • 28
    • 0028627764 scopus 로고
    • Heterogeneity models of disease susceptibility, with application to diabetic nephropathy
    • Hougaard P, Myglegard P, Borch-Johnsen K. Heterogeneity models of disease susceptibility, with application to diabetic nephropathy. Biometrics 1994; 50:1178-1188.
    • (1994) Biometrics , vol.50 , pp. 1178-1188
    • Hougaard, P.1    Myglegard, P.2    Borch-Johnsen, K.3
  • 29
    • 0001425487 scopus 로고
    • Modelling heterogeneity in survival analysis by the compound Poisson distribution
    • Aalen OO. Modelling heterogeneity in survival analysis by the compound Poisson distribution. Annals of Applied Probability 1988; 2:951-972.
    • (1988) Annals of Applied Probability , vol.2 , pp. 951-972
    • Aalen, O.O.1
  • 30
    • 0035874022 scopus 로고    scopus 로고
    • Modelling survival data with a cured fraction using frailty models
    • Price DL, Manatunga AK. Modelling survival data with a cured fraction using frailty models. Statistics in Medicine 2001; 20:1515-1527.
    • (2001) Statistics in Medicine , vol.20 , pp. 1515-1527
    • Price, D.L.1    Manatunga, A.K.2
  • 31
    • 0035876067 scopus 로고    scopus 로고
    • Long-term survivor mixture model with random effects: Application to a multi-centre clinical trial of carcinoma
    • Yau KKW, Ng ASK. Long-term survivor mixture model with random effects: application to a multi-centre clinical trial of carcinoma. Statistics in Medicine 2001; 20:1591-1607.
    • (2001) Statistics in Medicine , vol.20 , pp. 1591-1607
    • Yau, K.K.W.1    Ng, A.S.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.