메뉴 건너뛰기




Volumn , Issue , 2008, Pages 851-854

Web page clustering using a fuzzy logic based representation and Self-Organizing Maps

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARK DATASET; CLUSTERING QUALITIES; FEATURE VECTORS; HTML DOCUMENTS; TERM WEIGHTING; VECTOR SPACE MODELS; WEB PAGE CLUSTERING;

EID: 62949119232     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WIIAT.2008.249     Document Type: Conference Paper
Times cited : (9)

References (9)
  • 1
    • 84971655157 scopus 로고    scopus 로고
    • A som-based document clustering using phrases
    • J. Bakus, M. Hussin, and M. Kamel. A som-based document clustering using phrases. In ICONIP, 2002.
    • (2002) ICONIP
    • Bakus, J.1    Hussin, M.2    Kamel, M.3
  • 2
    • 34547854956 scopus 로고    scopus 로고
    • Neural network based document clustering using wordnet ontologies
    • C. Hung and S. Wermter. Neural network based document clustering using wordnet ontologies. Int. J. Hybrid Intell. Syst., 2004.
    • (2004) Int. J. Hybrid Intell. Syst
    • Hung, C.1    Wermter, S.2
  • 3
    • 0031625017 scopus 로고    scopus 로고
    • Dimensionality reduction by random mapping: Fast similarity computation for clustering
    • S. Kaski. Dimensionality reduction by random mapping: fast similarity computation for clustering. In IEEE World Congress on Computational Intelligence., 1998.
    • (1998) IEEE World Congress on Computational Intelligence
    • Kaski, S.1
  • 4
    • 0003410791 scopus 로고    scopus 로고
    • Springer-Verlag New York, Inc, Secaucus, NJ, USA
    • T. Kohonen. Self-Organizing Maps. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2001.
    • (2001) Self-Organizing Maps
    • Kohonen, T.1
  • 6
    • 62949242029 scopus 로고    scopus 로고
    • Y. Liu, X. Wang, and C. Wu. Consom: A conceptional som model for text clustering. Neurocomput., 2008.
    • Y. Liu, X. Wang, and C. Wu. Consom: A conceptional som model for text clustering. Neurocomput., 2008.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.