-
1
-
-
0035970024
-
Construction and Analysis of non-Poisson stimulus response models of neural spike train activity
-
Barbieri R, Quirk MC, Frank LM, Wilson M, Brown EN, "Construction and Analysis of non-Poisson stimulus response models of neural spike train activity" Journal of Neurosci Methods, 105: 25-37, 2001.
-
(2001)
Journal of Neurosci Methods
, vol.105
, pp. 25-37
-
-
Barbieri, R.1
Quirk, M.C.2
Frank, L.M.3
Wilson, M.4
Brown, E.N.5
-
2
-
-
0032183995
-
The Minimum Description Length Principle in Coding and Modeling
-
Barron AR, Rissanen J, Yu B. "The Minimum Description Length Principle in Coding and Modeling." IEEE Transactions on Information Theory, vol 44, no. 6, 1998.
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, Issue.6
-
-
Barron, A.R.1
Rissanen, J.2
Yu, B.3
-
4
-
-
0023686914
-
Maximum likelihood analysis of spike trains of interacting nerve cells
-
Brillinger, DR, "Maximum likelihood analysis of spike trains of interacting nerve cells," Biological Cybernetics, Vol. 59 (1988), pp. 189-200.
-
(1988)
Biological Cybernetics
, vol.59
, pp. 189-200
-
-
Brillinger, D.R.1
-
5
-
-
9744286025
-
Introduction to Linear Optimization
-
2nd Edition
-
Bertsimas, D. and Tsitsiklis, JN. "Introduction to Linear Optimization, 2nd Edition." Athena Scientific, Belmont, MA, 1997.
-
(1997)
Athena Scientific, Belmont, MA
-
-
Bertsimas, D.1
Tsitsiklis, J.N.2
-
6
-
-
0032686692
-
Estimation of Time-Varying Parameters in Statistical Models: An Optimization Approach
-
Bertsimas, D., Gamarnik, D., Tsitsiklis, JN. "Estimation of Time-Varying Parameters in Statistical Models: an Optimization Approach." Machine Learning, vol 35., pp. 225-245, 1999.
-
(1999)
Machine Learning
, vol.35
, pp. 225-245
-
-
Bertsimas, D.1
Gamarnik, D.2
Tsitsiklis, J.N.3
-
7
-
-
0036482863
-
The Time-Rescaling Theorem and Its Application to Neural Spike Train Data Analysis
-
Brown EN. etal, "The Time-Rescaling Theorem and Its Application to Neural Spike Train Data Analysis," Neural Computation, 14: 325-346, 2001.
-
(2001)
Neural Computation
, vol.14
, pp. 325-346
-
-
Brown, E.N.1
-
9
-
-
39549106853
-
-
Brown EN. Theory of Point Processes for Neural Systems. In: Chow CC, Gutkin B, Hansel D, Meunier C, Dalibard J, eds. Methods and Models in Neurophysics. Paris, Elsevier2005, Chapter 14, pp. 691-726.
-
Brown EN. "Theory of Point Processes for Neural Systems. In: Chow CC, Gutkin B, Hansel D, Meunier C, Dalibard J", eds. Methods and Models in Neurophysics. Paris, Elsevier2005, Chapter 14, pp. 691-726.
-
-
-
-
10
-
-
39549121443
-
A Computationally Efficient Method for Modeling Neural Spiking Activity with Point Processes Nonparametrically
-
preprint
-
Coleman, TP., Sarma S. "A Computationally Efficient Method for Modeling Neural Spiking Activity with Point Processes Nonparametrically." preprint.
-
-
-
Coleman, T.P.1
Sarma, S.2
-
11
-
-
39549100101
-
-
Daley D.J., Vere-Jones D., An Introduction to the Theory of Point Processes, New York: Springer, c2003.
-
Daley D.J., Vere-Jones D., "An Introduction to the Theory of Point Processes," New York: Springer, c2003.
-
-
-
-
12
-
-
0043069766
-
Organizations of cell assemblies in the hippocampus,
-
July
-
Harris, Kenneth D, Csicsvari, Jozsef, Hirase, Hajime, Dragoi, George, Buzsaki, Gyorgy, "Organizations of cell assemblies in the hippocampus,: Nature, Vol 424, July, 2003.
-
(2003)
Nature
, vol.424
-
-
Harris, K.D.1
Csicsvari, J.2
Hirase, H.3
Dragoi, G.4
Buzsaki, G.5
-
13
-
-
0031253263
-
Modeling neural activity using the generalized inverse Gaussian distribution
-
Iyengar S., Liao Q. "Modeling neural activity using the generalized inverse Gaussian distribution." Biol. Cyber, vol 77, pp. 289-295, 1997.
-
(1997)
Biol. Cyber
, vol.77
, pp. 289-295
-
-
Iyengar, S.1
Liao, Q.2
-
14
-
-
0003523764
-
-
Distributions in statistics: Continuous univariate distributions
-
Johnson A, Kotz S.," Distributions in statistics: Continuous univariate distributions," New York: Wiley, 1970.
-
(1970)
New York: Wiley
-
-
Johnson, A.1
Kotz, S.2
-
15
-
-
0035432526
-
A Spike Train Probability Model
-
Kass RE, Ventura V, "A Spike Train Probability Model,"Neural Computation, 13:1713-1720, 2001.
-
(2001)
Neural Computation
, vol.13
, pp. 1713-1720
-
-
Kass, R.E.1
Ventura, V.2
-
16
-
-
0034972776
-
Predicting every spike: A model for the responses of visual neurons
-
June
-
Keat J, Reinagel P, Reid RC, Meister M, "Predicting every spike: a model for the responses of visual neurons," Neuron, 30 (3): 803-17, June 2001.
-
(2001)
Neuron
, vol.30
, Issue.3
, pp. 803-817
-
-
Keat, J.1
Reinagel, P.2
Reid, R.C.3
Meister, M.4
-
17
-
-
0012346731
-
Statistical Models for earthquake occurrences and residual analysis forpoint processes
-
Ogata Y. "Statistical Models for earthquake occurrences and residual analysis forpoint processes," J Am Stat Assoc' 83: 9-27, 1988.
-
(1988)
J Am Stat Assoc
, vol.83
, pp. 9-27
-
-
Ogata, Y.1
-
18
-
-
12544253489
-
A Point Process Framework for Relating Neural Spiking Activity to Spiking History, Neural Ensemble, and Extrinsic Covariate Effects
-
Truccolo W., Eden U., Fellows M.R., Donoghue J., Brown EN, "A Point Process Framework for Relating Neural Spiking Activity to Spiking History, Neural Ensemble, and Extrinsic Covariate Effects," Journal of Neurophysiology' 93: 1074-1089, 2005.
-
(2005)
Journal of Neurophysiology
, vol.93
, pp. 1074-1089
-
-
Truccolo, W.1
Eden, U.2
Fellows, M.R.3
Donoghue, J.4
Brown, E.N.5
-
19
-
-
0039348216
-
Introduction to Theoretical Neurobiology: Nonlinear and Stochastic Theories
-
quot; University Press
-
Tuckwell, HC. "Introduction to Theoretical Neurobiology: Nonlinear and Stochastic Theories, Volume 2." Cambridge: Cambridge University Press, 1988.
-
(1988)
Cambridge: Cambridge
, vol.2
-
-
Tuckwell, H.C.1
|