-
1
-
-
0011459187
-
Difference schemes for multi-dimensional problems
-
K. A. BAGRINOVSKII AND S. K. GODUNOV, Difference schemes for multi-dimensional problems, Dokl. Acad. Nauk, 115 (1957), pp. 431-433.
-
(1957)
Dokl. Acad. Nauk
, vol.115
, pp. 431-433
-
-
BAGRINOVSKII, K.A.1
GODUNOV, S.K.2
-
2
-
-
28644437242
-
Dynamics of the ground state and the central vortex states in Bose-Einstein condensation
-
W. BAO AND Y. ZHANG, Dynamics of the ground state and the central vortex states in Bose-Einstein condensation, Math. Mod. Meth. Appl. Sci., 15 (2005), pp. 1863-1896.
-
(2005)
Math. Mod. Meth. Appl. Sci
, vol.15
, pp. 1863-1896
-
-
BAO, W.1
ZHANG, Y.2
-
3
-
-
0037138007
-
On time-splitting spectral approximations for the Schrodinger equation in the semiclassical regime
-
W. BAO, S. JIN, AND P. A. MARKOWICH, On time-splitting spectral approximations for the Schrodinger equation in the semiclassical regime, J. Comput. Phys., 175 (2002), pp. 487-524.
-
(2002)
J. Comput. Phys
, vol.175
, pp. 487-524
-
-
BAO, W.1
JIN, S.2
MARKOWICH, P.A.3
-
4
-
-
1842531889
-
Numerical study of time-splitting spectral discretizations of nonlinear Schrodinger equations in the semi-classical regimes
-
W. BAO, S. JIN, AND P. A. MARKOWICH, Numerical study of time-splitting spectral discretizations of nonlinear Schrodinger equations in the semi-classical regimes, SIAM J. Sci. Comp., 25 (2003), pp. 27-64.
-
(2003)
SIAM J. Sci. Comp
, vol.25
, pp. 27-64
-
-
BAO, W.1
JIN, S.2
MARKOWICH, P.A.3
-
5
-
-
34447282836
-
Solving the nonlinear Schrodinger equation using exponential integrators
-
H. BERLAND, A. L. ISLAS, AND C. M. SCHOBER, Solving the nonlinear Schrodinger equation using exponential integrators, J. Comput. Phys., 255 (2007), pp. 284-299.
-
(2007)
J. Comput. Phys
, vol.255
, pp. 284-299
-
-
BERLAND, H.1
ISLAS, A.L.2
SCHOBER, C.M.3
-
6
-
-
62749092077
-
Conservation of phase space properties using exponential integrators on the cubic Schrdinger equation
-
Trondheim, Norway, pp, Available at
-
H. BERLAND AND B. SKAFLESTAD, Conservation of phase space properties using exponential integrators on the cubic Schrdinger equation, in Proceedings of the 46th SIMS Conference on Simulation and Modeling, 2005, Trondheim, Norway, pp. 9-18. Available at
-
(2005)
Proceedings of the 46th SIMS Conference on Simulation and Modeling
, pp. 9-18
-
-
BERLAND, H.1
SKAFLESTAD, B.2
-
8
-
-
0042781006
-
Numerical simulation of the semi-classical limit of the focusing nonlinear Schrodinger equation
-
J. C. BRONSKI AND J. N. KUTZ, Numerical simulation of the semi-classical limit of the focusing nonlinear Schrodinger equation, Phys. Lett. A, 254 (1999), pp. 325-336.
-
(1999)
Phys. Lett. A
, vol.254
, pp. 325-336
-
-
BRONSKI, J.C.1
KUTZ, J.N.2
-
9
-
-
0141759471
-
A semi-implicit moving mesh method for the focusing nonlinear Schrodinger equation
-
H. D. CENICEROS, A semi-implicit moving mesh method for the focusing nonlinear Schrodinger equation, Coram. Pure Appl. Anal., 1 (2002), pp. 1-18.
-
(2002)
Coram. Pure Appl. Anal
, vol.1
, pp. 1-18
-
-
CENICEROS, H.D.1
-
10
-
-
17944399485
-
-
H. D. CENICEROS AND FEI-R.AN TIAN, A numerical study of the semi-classical limit of the focusing nonlinear Schrdinger equation, Physics Lett A, 306 (2002), pp. 25-34 .
-
H. D. CENICEROS AND FEI-R.AN TIAN, A numerical study of the semi-classical limit of the focusing nonlinear Schrdinger equation, Physics Lett A, 306 (2002), pp. 25-34 .
-
-
-
-
11
-
-
0022075599
-
Fourier methods with extended stability intervals for the Korteweg de Vries equation
-
T. F. CHAN AND T. KERKHOVEN, Fourier methods with extended stability intervals for the Korteweg de Vries equation, SIAM J. Nuraer. Anal., 22 (1985), pp. 441-454.
-
(1985)
SIAM J. Nuraer. Anal
, vol.22
, pp. 441-454
-
-
CHAN, T.F.1
KERKHOVEN, T.2
-
12
-
-
0036501083
-
Exponential time differencing for stiff systems
-
S. M. COX AND P. C. MATTHEWS, Exponential time differencing for stiff systems, J. Comput. Phys., 176 (2002), pp. 430-455.
-
(2002)
J. Comput. Phys
, vol.176
, pp. 430-455
-
-
COX, S.M.1
MATTHEWS, P.C.2
-
13
-
-
1842665167
-
ANDX. ZHOU, New result'in small dispersion KdVby an extension of the steepest descent method for Riemann-Hilbert problems
-
P. DEIFT, S. VENAKIDES.ANDX. ZHOU, New result'in small dispersion KdVby an extension of the steepest descent method for Riemann-Hilbert problems, Internal. Math. Res. Notices, 6 (1997), pp. 286-299.
-
(1997)
Internal. Math. Res. Notices
, vol.6
, pp. 286-299
-
-
DEIFT, P.1
VENAKIDES, S.2
-
14
-
-
0036866730
-
A composite Runge-Kutta method for the spectral solution of semilinear PDEs
-
[ T. A. DRISCOLL, A composite Runge-Kutta method for the spectral solution of semilinear PDEs, J. Comput. Phys., 182 (2002), pp. 357-367.
-
(2002)
J. Comput. Phys
, vol.182
, pp. 357-367
-
-
DRISCOLL, T.A.1
-
15
-
-
84867977715
-
On universality of critical behaviour in the focusing nonlinear Schrodinger equation, elliptic umbilic catastrophe and the tritronquee solution to the Painleve-I equation
-
to appear
-
B. DUBROVIN, T. GRAVA, AND C. KLEIN, On universality of critical behaviour in the focusing nonlinear Schrodinger equation, elliptic umbilic catastrophe and the tritronquee solution to the Painleve-I equation, J. Nonlinear Sci., to appear.
-
J. Nonlinear Sci
-
-
DUBROVIN, B.1
GRAVA, T.2
KLEIN, C.3
-
16
-
-
0001444952
-
A fast spectral algorithm for nonlinear wave equations with linear dispersion
-
B. FORNBERG AND T. A. DRISCOLL, A fast spectral algorithm for nonlinear wave equations with linear dispersion, J. Comput. Phys., 155 (1999), pp. 456-467.
-
(1999)
J. Comput. Phys
, vol.155
, pp. 456-467
-
-
FORNBERG, B.1
DRISCOLL, T.A.2
-
17
-
-
34948872169
-
Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations
-
T. GRAVA AND C. KLEIN, Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations, Comm. Pure Appl. Math., 60 (2007), pp. 1623-1664.
-
(2007)
Comm. Pure Appl. Math
, vol.60
, pp. 1623-1664
-
-
GRAVA, T.1
KLEIN, C.2
-
18
-
-
0002279610
-
Exponential integrators for large systems of differential equations
-
M. HOCHBRUCK, C. LUBICH, AND H. SELHOFER, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19 (1998), pp. 1552-1574.
-
(1998)
SIAM J. Sci. Comput
, vol.19
, pp. 1552-1574
-
-
HOCHBRUCK, M.1
LUBICH, C.2
SELHOFER, H.3
-
19
-
-
33646264630
-
Exponential Runge-Kutta methods for semilinear parabolic problems
-
M. HOCHBRUCK AND A. OSTERMANN, Exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal., 43 (2005), pp. 1069-1090.
-
(2005)
SIAM J. Numer. Anal
, vol.43
, pp. 1069-1090
-
-
HOCHBRUCK, M.1
OSTERMANN, A.2
-
20
-
-
0033438093
-
The semiclassical limit of the Defocusing NLS Hierarchy
-
S. JIN, D. D. LEVERMORE, AND D. W. MCLAUGHLIN, The semiclassical limit of the Defocusing NLS Hierarchy, Comm. Pure Appl. Math., 52 (1999), pp. 613-654.
-
(1999)
Comm. Pure Appl. Math
, vol.52
, pp. 613-654
-
-
JIN, S.1
LEVERMORE, D.D.2
MCLAUGHLIN, D.W.3
-
21
-
-
85009055469
-
-
Princeton University Press, Princeton, NJ
-
S. KAMVISSIS, K. D. T.-R. MCLAUGHLIN, AND P. D. MILLER, Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrodinger Equation, Annals of Mathematics Studies, 154, Princeton University Press, Princeton, NJ, 2003.
-
(2003)
Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrodinger Equation, Annals of Mathematics Studies
, vol.154
-
-
KAMVISSIS, S.1
MCLAUGHLIN, K.D.T.-R.2
MILLER, P.D.3
-
22
-
-
22544474620
-
Fourth-order time-stepping for stiff PDEs
-
A.-K. KASSAM AND L. N. TREFETHEN, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput., 26 (2005), pp. 1214-1233.
-
(2005)
SIAM J. Sci. Comput
, vol.26
, pp. 1214-1233
-
-
KASSAM, A.-K.1
TREFETHEN, L.N.2
-
23
-
-
84867922204
-
Numerical Study of oscillatory regimes in the Kadomtsev-Petviashvili equation
-
C. KLEIN, C. SPARBER, AND P. MARKOWICH, Numerical Study of oscillatory regimes in the Kadomtsev-Petviashvili equation, J. Nonlinear Sci., 17 (2007), pp. 429-470.
-
(2007)
J. Nonlinear Sci
, vol.17
, pp. 429-470
-
-
KLEIN, C.1
SPARBER, C.2
MARKOWICH, P.3
-
24
-
-
0022735928
-
A study of singularity formation in a vortex sheet by the point-vortex approximation
-
R. KRASNY, A study of singularity formation in a vortex sheet by the point-vortex approximation, J. Fluid Mech., 167 (1986), pp. 65-93.
-
(1986)
J. Fluid Mech
, vol.167
, pp. 65-93
-
-
KRASNY, R.1
-
25
-
-
1042292497
-
Deferred correction methods for initial value boundary problems
-
W. KRESS AND B. GUSTAFSSON, Deferred correction methods for initial value boundary problems, SIAM J. Sci. Comput., 17 (2002), pp. 241-251.
-
(2002)
SIAM J. Sci. Comput
, vol.17
, pp. 241-251
-
-
KRESS, W.1
GUSTAFSSON, B.2
-
26
-
-
10844237437
-
Generalized integrating factor methods for stiff PDEs,]
-
S. KROGSTAD, Generalized integrating factor methods for stiff PDEs,]. Comput. Phys., 203 (2005), pp. 72-88.
-
(2005)
Comput. Phys
, vol.203
, pp. 72-88
-
-
KROGSTAD, S.1
-
27
-
-
0001202958
-
Generalized Runge-Kutta processes for stable systems with large Lipschitz constants
-
J. D. LAWSON, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal., 4 (1967), pp. 372-380.
-
(1967)
SIAM J. Numer. Anal
, vol.4
, pp. 372-380
-
-
LAWSON, J.D.1
-
28
-
-
84990575581
-
-
Coram. Pure Appl. Math, 36 1983, pp
-
P. D. LAX AND C. D. LEVERMORE, The small dispersion limit of the Korteweg de Vries equation, I, II, III, Coram. Pure Appl. Math., 36 (1983), pp. 253-290, pp. 571-593, pp. 809-830.
-
The small dispersion limit of the Korteweg de Vries equation, I, II, III
-
-
LAX, P.D.1
LEVERMORE, C.D.2
-
29
-
-
34249706371
-
The N-soliton of the focusing nonlinear Schroodinger equation for N large
-
G. LYNG AND P. D. MILLER, The N-soliton of the focusing nonlinear Schroodinger equation for N large. Coram. Pure Appl. Math., 60 (2007), pp. 951-1026.
-
(2007)
Coram. Pure Appl. Math
, vol.60
, pp. 951-1026
-
-
LYNG, G.1
MILLER, P.D.2
-
30
-
-
0002023137
-
On the semiclassical limit of the focusing nonlinear Schrodinger equation
-
P. D. MILLER AND S. KAMVISSIS, On the semiclassical limit of the focusing nonlinear Schrodinger equation, Phys. Lett. A, 247 (1998), pp. 75-86.
-
(1998)
Phys. Lett. A
, vol.247
, pp. 75-86
-
-
MILLER, P.D.1
KAMVISSIS, S.2
-
31
-
-
33745303106
-
A review of exponential Integrators for first order semi-linear problems
-
Technical Report 2, The Norwegian University of Science and Technology
-
B. MINCHEV AND W. WRIGHT, A review of exponential Integrators for first order semi-linear problems. Technical Report 2, The Norwegian University of Science and Technology, 2005.
-
(2005)
-
-
MINCHEV, B.1
WRIGHT, W.2
-
32
-
-
0001000124
-
Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media
-
J. SATSUMA AND N. Y.AJIMA, Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media, Supp. Prog. Theo. Phys., 55 (1974), pp. 284-306.
-
(1974)
Supp. Prog. Theo. Phys
, vol.55
, pp. 284-306
-
-
SATSUMA, J.1
AJIMA, N.Y.2
-
34
-
-
0033190030
-
Solving index-1 DAEs in MATLAB and Simulink
-
L. F. SHAMPINE, M. W. REICHELT, AND J. A. KIERZENKA, Solving index-1 DAEs in MATLAB and Simulink, SIAM Rev., 41 (1999), pp. 538-552.
-
(1999)
SIAM Rev
, vol.41
, pp. 538-552
-
-
SHAMPINE, L.F.1
REICHELT, M.W.2
KIERZENKA, J.A.3
-
35
-
-
1942507941
-
Toward non-commutative numerical analysis: High order integration in time
-
M. SCHATZMAN, Toward non-commutative numerical analysis: High order integration in time, J. Sci. Corn-put, 17 (2002), pp. 99-116.
-
(2002)
J. Sci. Corn-put
, vol.17
, pp. 99-116
-
-
SCHATZMAN, M.1
-
36
-
-
62749194540
-
-
PhD thesis, Oxford University
-
T. SCHMELZER, PhD thesis, Oxford University, 2007.
-
(2007)
-
-
SCHMELZER, T.1
-
37
-
-
2942535891
-
On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrbdinger equation
-
A. TOVBIS, S. VENAKIDES, AND X. ZHOU, On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrbdinger equation, Comm. Pure Appl. Math., 57 (2004) pp. 877-985.
-
(2004)
Comm. Pure Appl. Math
, vol.57
, pp. 877-985
-
-
TOVBIS, A.1
VENAKIDES, S.2
ZHOU, X.3
-
39
-
-
84990586440
-
The Korteweg de Vries equations with small dispersion: Higher order Lax-Levermore theory
-
S. VENAKIDES, The Korteweg de Vries equations with small dispersion: higher order Lax-Levermore theory, Comm. Pure Appl. Math., 43 (1990), pp. 335-361.
-
(1990)
Comm. Pure Appl. Math
, vol.43
, pp. 335-361
-
-
VENAKIDES, S.1
-
40
-
-
0001005075
-
Construction of higher order symplectic integrators
-
H. YOSHIDA, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), pp. 262-268.
-
(1990)
Phys. Lett. A
, vol.150
, pp. 262-268
-
-
YOSHIDA, H.1
|