-
2
-
-
0002787793
-
-
10.1103/PhysRevLett.73.58
-
M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Phys. Rev. Lett. 73, 58 (1994). 10.1103/PhysRevLett.73.58
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 58
-
-
Reck, M.1
Zeilinger, A.2
Bernstein, H.J.3
Bertani, P.4
-
3
-
-
34347385703
-
-
10.1016/j.physrep.2007.04.005
-
X.-B. Wang, T. Hiroshima, Akihisa Tomita, and M. Hayashi, Phys. Rep. 448, 1 (2007). 10.1016/j.physrep.2007.04.005
-
(2007)
Phys. Rep.
, vol.448
, pp. 1
-
-
Wang, X.-B.1
Hiroshima, T.2
Tomita, A.3
Hayashi, M.4
-
5
-
-
0000619015
-
-
10.1103/PhysRevA.49.1473;
-
L. Vaidman, Phys. Rev. A 49, 1473 (1994) 10.1103/PhysRevA.49.1473
-
(1994)
Phys. Rev. A
, vol.49
, pp. 1473
-
-
Vaidman, L.1
-
8
-
-
0036542298
-
-
10.1103/PhysRevA.65.042310
-
T. Tyc and B. C. Sanders, Phys. Rev. A 65, 042310 (2002). 10.1103/PhysRevA.65.042310
-
(2002)
Phys. Rev. A
, vol.65
, pp. 042310
-
-
Tyc, T.1
Sanders, B.C.2
-
11
-
-
0001087189
-
-
10.1103/PhysRevA.45.6811;
-
B. C. Sanders, Phys. Rev. A 45, 6811 (1992) 10.1103/PhysRevA.45.6811
-
(1992)
Phys. Rev. A
, vol.45
, pp. 6811
-
-
Sanders, B.C.1
-
13
-
-
0001326754
-
-
10.1103/PhysRevA.59.1615
-
M. G. A. Paris, Phys. Rev. A 59, 1615 (1999). 10.1103/PhysRevA.59.1615
-
(1999)
Phys. Rev. A
, vol.59
, pp. 1615
-
-
Paris, M.G.A.1
-
14
-
-
84983701913
-
-
10.1103/PhysRevA.65.032323
-
M. S. Kim, W. Son, V. Buzek, and P. L. Knight, Phys. Rev. A 65, 032323 (2002). 10.1103/PhysRevA.65.032323
-
(2002)
Phys. Rev. A
, vol.65
, pp. 032323
-
-
Kim, M.S.1
Son, W.2
Buzek, V.3
Knight, P.L.4
-
16
-
-
33846051389
-
-
10.1088/1009-1963/15/12/030
-
H.-R. Li, F.-L. Li, and Y. Yang, Chin. Phys. 15, 2947 (2006). 10.1088/1009-1963/15/12/030
-
(2006)
Chin. Phys.
, vol.15
, pp. 2947
-
-
Li, H.-R.1
Li, F.-L.2
Yang, Y.3
-
18
-
-
0036702127
-
-
10.1103/PhysRevA.66.024303
-
Wang Xiang-bin, Phys. Rev. A 66, 024303 (2002). 10.1103/PhysRevA.66. 024303
-
(2002)
Phys. Rev. A
, vol.66
, pp. 024303
-
-
Xiang-Bin, W.1
-
20
-
-
33749182077
-
-
10.1103/PhysRevA.74.032333;
-
M. Hillery and M. S. Zubairy, Phys. Rev. A 74, 032333 (2006) 10.1103/PhysRevA.74.032333
-
(2006)
Phys. Rev. A
, vol.74
, pp. 032333
-
-
Hillery, M.1
Zubairy, M.S.2
-
21
-
-
33746265307
-
-
10.1103/PhysRevA.74.012317;
-
H. Nha and J. Kim, Phys. Rev. A 74, 012317 (2006) 10.1103/PhysRevA.74. 012317
-
(2006)
Phys. Rev. A
, vol.74
, pp. 012317
-
-
Nha, H.1
Kim, J.2
-
22
-
-
34547227614
-
-
10.1103/PhysRevA.76.014305
-
H. Nha, Phys. Rev. A 76, 014305 (2007). 10.1103/PhysRevA.76.014305
-
(2007)
Phys. Rev. A
, vol.76
, pp. 014305
-
-
Nha, H.1
-
23
-
-
52949090831
-
-
10.1103/PhysRevLett.101.130402
-
H. Nha and M. S. Zubairy, Phys. Rev. Lett. 101, 130402 (2008). 10.1103/PhysRevLett.101.130402
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 130402
-
-
Nha, H.1
Zubairy, M.S.2
-
25
-
-
25944433479
-
-
10.1103/PhysRevA.44.R2775
-
C. T. Lee, Phys. Rev. A 44, R2775 (1991). 10.1103/PhysRevA.44.R2775
-
(1991)
Phys. Rev. A
, vol.44
, pp. 2775
-
-
Lee, C.T.1
-
26
-
-
0000587786
-
-
10.1103/PhysRevA.35.725;
-
M. Hillery, Phys. Rev. A 35, 725 (1987) 10.1103/PhysRevA.35.725
-
(1987)
Phys. Rev. A
, vol.35
, pp. 725
-
-
Hillery, M.1
-
27
-
-
24244479032
-
-
10.1103/PhysRevA.39.2994
-
M. Hillery, Phys. Rev. A 39, 2994 (1989). 10.1103/PhysRevA.39.2994
-
(1989)
Phys. Rev. A
, vol.39
, pp. 2994
-
-
Hillery, M.1
-
28
-
-
24844447449
-
-
10.1103/PhysRevA.51.1622
-
L. Knoll and A. Orlowski, Phys. Rev. A 51, 1622 (1995). 10.1103/PhysRevA.51.1622
-
(1995)
Phys. Rev. A
, vol.51
, pp. 1622
-
-
Knoll, L.1
Orlowski, A.2
-
31
-
-
25044456610
-
-
10.1103/PhysRev.131.2766;
-
R. J. Glauber, Phys. Rev. 131, 2766 (1963) 10.1103/PhysRev.131.2766
-
(1963)
Phys. Rev.
, vol.131
, pp. 2766
-
-
Glauber, R.J.1
-
32
-
-
0001217229
-
-
10.1103/PhysRevLett.10.277
-
E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963). 10.1103/PhysRevLett. 10.277
-
(1963)
Phys. Rev. Lett.
, vol.10
, pp. 277
-
-
Sudarshan, E.C.G.1
-
33
-
-
0141461510
-
-
10.1103/PhysRevA.68.012314
-
M. G. A. Paris, F. Illuminati, A. Serafini, and S. De Siena, Phys. Rev. A 68, 012314 (2003). 10.1103/PhysRevA.68.012314
-
(2003)
Phys. Rev. A
, vol.68
, pp. 012314
-
-
Paris, M.G.A.1
Illuminati, F.2
Serafini, A.3
De Siena, S.4
-
34
-
-
62549118861
-
-
In this paper, complex-valued covariance matrices, Vc, are constructed with respect to field amplitudes α and α, whereas in other literatures real-valued ones, Vr, are usually constructed with respect to canonical variables x and p, e.g.. Using the relation α= 1 2 (x+ip), however, one can easily translate one into the other as Vr = C† Vc C where C C1 C1 is a unitary matrix with C1 = 1 2 (1 1 i -i).
-
In this paper, complex-valued covariance matrices, Vc, are constructed with respect to field amplitudes α and α, whereas in other literatures real-valued ones, Vr, are usually constructed with respect to canonical variables x and p, e.g.. Using the relation α= 1 2 (x+ip), however, one can easily translate one into the other as Vr = C† Vc C where CH≡ C1 C1 is a unitary matrix with C1 = 1 2 (1 1 i -i).
-
-
-
-
35
-
-
0037574296
-
-
10.1103/PhysRevLett.77.1413
-
A. Peres, Phys. Rev. Lett. 77, 1413 (1996). 10.1103/PhysRevLett.77.1413
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 1413
-
-
Peres, A.1
-
39
-
-
0000588867
-
-
10.1103/PhysRevLett.84.2726
-
R. Simon, Phys. Rev. Lett. 84, 2726 (2000). 10.1103/PhysRevLett.84.2726
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 2726
-
-
Simon, R.1
-
41
-
-
0000693787
-
-
10.1103/PhysRevLett.84.2722
-
L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000). 10.1103/PhysRevLett.84.2722
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 2722
-
-
Duan, L.-M.1
Giedke, G.2
Cirac, J.I.3
Zoller, P.4
-
42
-
-
0036509287
-
-
10.1103/PhysRevA.65.032314
-
G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002). 10.1103/PhysRevA.65.032314
-
(2002)
Phys. Rev. A
, vol.65
, pp. 032314
-
-
Vidal, G.1
Werner, R.F.2
-
44
-
-
0028524257
-
-
10.1103/PhysRevA.50.3295
-
M. J. W. Hall, Phys. Rev. A 50, 3295 (1994). 10.1103/PhysRevA.50.3295
-
(1994)
Phys. Rev. A
, vol.50
, pp. 3295
-
-
Hall, M.J.W.1
-
45
-
-
47249131589
-
-
10.1103/PhysRevA.78.012103
-
H. Nha, Phys. Rev. A 78, 012103 (2008). 10.1103/PhysRevA.78.012103
-
(2008)
Phys. Rev. A
, vol.78
, pp. 012103
-
-
Nha, H.1
-
46
-
-
62549124305
-
-
Furthermore, the convolution of two P functions, P (η) = d2 ζ P1 (ζ) P2 (η-ζ) as in Eq. 6, which reads as C (ξ) = e1/2 |ξ| 2 C1 (ξ) C2 (ξ) at the level of characteristic function, does not necessarily represent a physical state. For example, take one-photon Fock states, ρ1,2 = |1 1|. It is straightforward, using the method described in, to obtain the resulting quasidensity operator as ρ= |0 0| -2 |1 1| +2 |2 2|, which is unphysical.
-
Furthermore, the convolution of two P functions, P (η) = d2 ζ P1 (ζ) P2 (η-ζ) as in Eq. 6, which reads as C (ξ) = e1/2 |ξ| 2 C1 (ξ) C2 (ξ) at the level of characteristic function, does not necessarily represent a physical state. For example, take one-photon Fock states, ρ1,2 = |1 1|. It is straightforward, using the method described in, to obtain the resulting quasidensity operator as ρ= |0 0| -2 |1 1| +2 |2 2|, which is unphysical.
-
-
-
|