메뉴 건너뛰기




Volumn , Issue , 2008, Pages 692-699

ARUBAS: An association rule based similarity framework for associative classifiers

Author keywords

[No Author keywords available]

Indexed keywords

ASSOCIATION RULES; ASSOCIATIVE PROCESSING; CLASSIFIERS; INFORMATION MANAGEMENT; LEARNING SYSTEMS; TECHNICAL PRESENTATIONS;

EID: 62449107502     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDMW.2008.58     Document Type: Conference Paper
Times cited : (7)

References (15)
  • 4
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res., 7:1-30, 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1-30
    • Demšar, J.1
  • 5
    • 33244496359 scopus 로고    scopus 로고
    • FIMI'03: Workshop on Frequent Itemset Mining Implementations
    • B. Goethals and M. Zaki, editors, of
    • B. Goethals and M. Zaki, editors. FIMI'03: Workshop on Frequent Itemset Mining Implementations, volume 90 of CEUR Workshop Proceedings series, 2003.
    • (2003) CEUR Workshop Proceedings series , vol.90
  • 6
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD Rec., 29(2):1-12, 2000.
    • (2000) SIGMOD Rec , vol.29 , Issue.2 , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 7
    • 78149313084 scopus 로고    scopus 로고
    • Cmar: Accurate and efficient classification based on multiple class-association rules
    • Washington, DC, USA, IEEE Computer Society
    • W. Li, J. Han, and J. Pei. Cmar: Accurate and efficient classification based on multiple class-association rules. In ICDM'01: Proceedings of the 2001 IEEE International Conference on Data Mining, pages 369-376, Washington, DC, USA, 2001. IEEE Computer Society.
    • (2001) ICDM'01: Proceedings of the 2001 IEEE International Conference on Data Mining , pp. 369-376
    • Li, W.1    Han, J.2    Pei, J.3
  • 8
    • 84948104699 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • New York City, NY, August, The CBA system can be downloaded from
    • B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In ACM Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD'98), pages 80-86, New York City, NY, August 1998. (The CBA system can be downloaded from http://www.comp.nus.edu.sg/dm2).
    • (1998) ACM Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD'98) , pp. 80-86
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 10
    • 26944473200 scopus 로고    scopus 로고
    • R. Rak, W. Stach, O. R. Zaïane, and M.-L. Antonie. Considering re-occurring features in associative classifiers. In Advances in Knowledge Discovery and Data Mining, 3518/2005 of Lecture Notes in Computer Science, pages 240-248. Springer Berlin / Heidelberg, 2005.
    • R. Rak, W. Stach, O. R. Zaïane, and M.-L. Antonie. Considering re-occurring features in associative classifiers. In Advances in Knowledge Discovery and Data Mining, volume 3518/2005 of Lecture Notes in Computer Science, pages 240-248. Springer Berlin / Heidelberg, 2005.
  • 12
    • 34249687044 scopus 로고    scopus 로고
    • A review of associative classification mining
    • F. Thabtah. A review of associative classification mining. Knowl. Eng. Rev., 22(1):37-65, 2007.
    • (2007) Knowl. Eng. Rev , vol.22 , Issue.1 , pp. 37-65
    • Thabtah, F.1
  • 14
    • 11344262990 scopus 로고    scopus 로고
    • Cpar: Classification based on predictive association rules
    • San Francisco, CA: SIAM Press
    • X. Yin and J. han. Cpar: Classification based on predictive association rules. In Proceedings of the SIAM International Conference on Data Mining., pages 369-376. San Francisco, CA: SIAM Press, 2003.
    • (2003) Proceedings of the SIAM International Conference on Data Mining , pp. 369-376
    • Yin, X.1    han, J.2
  • 15
    • 35048886120 scopus 로고    scopus 로고
    • A. Zimmermann and L. De Raedt. Corclass : Correlated association rule mining for classification. In Discovery Science, 3245/2004 of Lecture Notes in Computer Science, pages 60-72. Springer Berlin / Heidelberg, 2004.
    • A. Zimmermann and L. De Raedt. Corclass : Correlated association rule mining for classification. In Discovery Science, volume 3245/2004 of Lecture Notes in Computer Science, pages 60-72. Springer Berlin / Heidelberg, 2004.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.